
Antriebseinheiten AOK, AGK

Systematik der Kurzbezeichnungen

Produkt Kurzbezeichnung

Anhand der Produkt-Kurzbezeichnung lassen sich Rexroth Linear-Achsen hinsichtlich Produktfamilie, Baugröße, Ausführung und Produktgeneration identifizieren.

Änderungen/Ergänzungen auf einen Blick

Katalogaufbau

- Neue Katalognummer
- Neue Produktkurzbezeichnung
- Überarbeitete Maßbilder
- Zusätzliches Kapitel "Lieferform"
- Überarbeiteter Tabellenaufbau der technischen Datentabellen und Antriebsdaten
- Überarbeitetes Kapitel "Berechnung"
- Überarbeitetes Kapitel "Konfiguration, Bestellung, Maßbilder, Optionen"
- Zusätzliches Kapitel "Anbausätze für Motoren nach Kundenwunsch"
- Zusätzliches Kapitel "Motoren"
- Zusätzliches Kapitel Schalteranbau/Schaltsystem für AGK

Technische Änderungen

- Erweiterung verfügbare Muttern
- Erweiterung verfügbare Mutterngehäuse
- Erhöhung der zulässigen Antriebsmomente
- Überarbeitung Kapitel "Schaltsystem"
- Bestellbeispiel
- Anfrageblatt

Inhalt


Produktbeschreibung AOK/AGK	4	Anbauteile und Zubehor	84
	_	Befestigung	84
Lieferform	7	Befestigungshinweise AGK	84
A	•	Einbautoleranzen AGK/AOK	85
Antriebseinheiten AOK	8	Anbausätze für Motoren nach Kundenwunsch	86
Produktbeschreibung	8	Motoren	88
Aufbau	10	IndraDyn S - Servomotoren MSK	88
Technische Daten	12	IndraDyn S - Servomotoren MSM	90
Allgemeine technische Daten	12	Schalteranbau AGK	92
Antriebsdaten	12	Schaltsystem	94
Benennungen siehe nächste Doppelseite	13	Sensoren	94
Zulässiges Antriebsmoment	16	Verlängerungen	96
Zulässige Geschwindigkeit	18	Stecker	98
Berechnung	20	Adapter	99
Berechnungsgrundlagen	20	Verteiler	100
Antriebsauslegung	23	Kombinationsbeispiele	104
Berechnungsbeispiel	28	Dose und Stecker	105
Konfiguration, Bestellung, Maßbilder, Optionen	32		
AOK-020	32	Service und Informationen	106
AOK-032	38	Betriebsbedingungen	106
AOK-040	44	Schmierung	107
		Schmieranschlüsse	107
Antriebseinheiten AGK	50	Übersicht	108
Produktbeschreibung	50	Fettschmierung	110
Produktbeschreibung SPU	51	Fließfettschmierung	112
Aufbau	52	Ölschmierung	114
		Vorsatzschmiereinheit (VSE)	116
Technische Daten	54	Parametrierung (Inbetriebnahme)	118
Allgemeine technische Daten Antriebsdaten	54 54	Dokumentation	119
Zulässiges Antriebsmoment	56	Bestellbeispiel	120
Zulässige Geschwindigkeit	57	•	
Berechnung		Formular Anfrage/Bestellung	122
Berechnungsgrundlagen	60 60	Weiterführende Informationen	124
Antriebsauslegung	63	Notizen	126
Berechnungsbeispiel	68		
Konfiguration, Bestellung, Maßbilder, Optionen AGK-020	72		
AGK-020 AGK-032	72 76		
AGK-032 AGK-040	76 80		
AGN-040	00		

Produktbeschreibung AOK/AGK

Antriebseinheiten AOK und AGK bestehen aus dem bewährten Rexroth Kugelgewindetrieb (BASA - BAll Screw Assembly), welcher mit Mutterngehäuse und Stehlagereinheiten zu einer einbaufertigen Antriebsachse komplettiert ist. Durch die Kombination mit einer externen Linearführung wird die Antriebseinheit zur funktionsfähigen Linearachse für viele Anwendungsfälle.

Vorteile

- Verfügbar in jeweils drei Baugrößen mit frei konfigurierbaren Längen bis zu 5600 mm
- Variabel in L\u00e4nge und Ausf\u00fchrung durch Konfiguration mit umfangreichen Optionen
- Angabe von technischen Daten für die komplette Einheit wie z.B. maximal zulässiges Antriebsmoment, Geschwindigkeit usw.
- Typenschild mit Angabe von technischen Parametern für die Inbetriebnahme
- Hohe Positionier- und Wiederholgenauigkeit durch Kugelgewindetrieb mit spielfrei vorgespanntem Mutternsystem
- In Verbindung mit den Rexroth-Schienenführungen sind alle konstruktiven Freiheiten für den Aufbau einer Maschine gegeben.

Einsatzgebiete

Für Antriebseinheiten bestehen vielfältige Einsatzmöglichkeiten als Antriebsachse für lineare Verfahr-und Positionieraufgaben in nachfolgend aufgeführten Anwendungsbereichen und Branchen.

Mögliche Anwendungen

- Pick and Place
- Handlingsysteme
- Bestücker, Palletierer
- Zuführeinheiten bei Werkzeugmaschinen
- Prüf- und Analysesysteme
- Zuführeinheiten in Transferstraßen
- Verschiebeeinheiten

Mögliche Branchen

- Handling und Montage
- Elektronik- und Halbleiterindustrie
- Automobilzulieferer und -hersteller
- Robotik und Automation
- Sondermaschinenbau
- Verpackungstechnik
- Kunststoffverarbeitung
- Textilindustrie

Antriebseinheiten AOK offene Bauform

- Schnelle Montage und leichtes Ausrichten der Antriebseinheit durch bearbeitete Anschlagkanten an Mutterngehäuse und Stehlager
- Ausführung mit und ohne Loslagerung verfügbar
- Motoranbau über Flansch und Kupplung oder Riemenvorgelege
- Rexroth Servomotor (MSK/MSM)

Antriebseinheiten AGK geschlossene Bauform

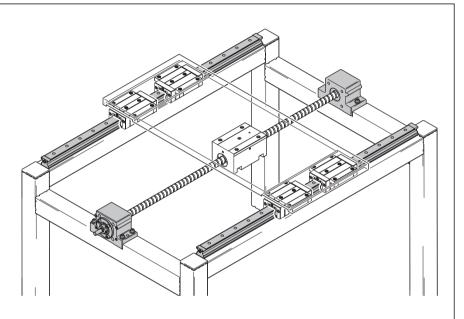
- Schnelle Montage und leichtes Ausrichten der Antriebseinheit durch bearbeitete Anschlagkante am Stehlagergehäuse
- Optimale Abdichtung durch Aluminiumprofil und Bandabdeckung in Stahl oder Polyurethan
- Mitlaufende Spindelunterstützungen für maximale Geschwindigkeiten im Horizontalbetrieb
- Motoranbau über Flansch und Kupplung oder Riemenvorgelege
- Rexroth Servomotor (MSK/MSM)

Übersicht

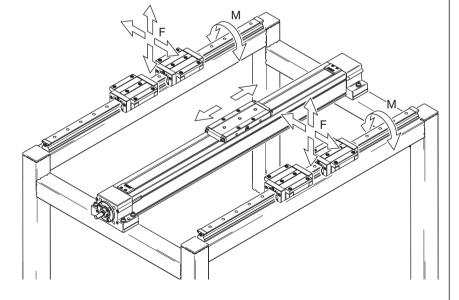
Antriebseinheit	Тур	Bauform	Kenngröße maximal	Größe		
				-020	-032	-040
	AOK	offen	L _{max} (mm)	3 000	4 000	5 000
2			Dynamische Tragzahl C (N)	14 300	31 700	50 000
	AGK	geschlossen	L _{max} (mm)	3 000	5 000	5 600
5			Dynamische Tragzahl C (N)	14 300	31 700	50 000

Produktbeschreibung AOK/AGK

Anwendungsbezogene Hinweise


Die Antriebseinheiten AOK und AGK sind für reine Antriebsaufgaben ausgelegt und dürfen ausschließlich axiale Kräfte aufnehmen.

Beim Einsatz einer Antriebseinheit sind deshalb immer geeignete separate Linearführungen vorzusehen, die den zu bewegenden Aufbau und darauf einwirkende Auflagerkräfte und -momente aufnehmen.


Es entsteht somit eine linear gelagerte Verschiebeeinheit (z.B. Tischplatte), die durch den Einsatz einer Antriebseinheit AOK oder AGK automatisiert bewegt werden kann.

Beispiele

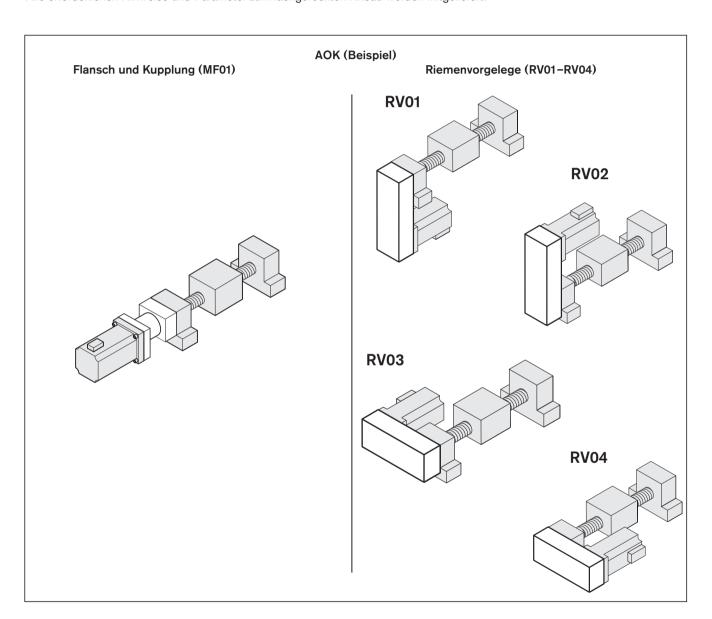
Beispiel eines prinzipiellen Aufbaus einer Verschiebeeinheit mit Tischplatte und Antriebseinheit AOK

Im dargestellten Beispiel nehmen zwei separate Schienenführungen mit je zwei Führungswagen auftretende Kräfte und Momente auf, sodass beim Verschieben des Aufbaus auf die Antriebseinheit (hier AGK) nur axiale Kräfte wirken.

 Λ

Befestigungshinweise und Einbautoleranzen im Kapitel "Anbauteile und Zubehör" beachten!

Lieferform


Antriebseinheiten werden komplett montiert geliefert.

Motoranbau

Falls eine Kombination aus Motor und Motoranbau gewählt wurde, erfolgt der Anbau der Komponenten gemäß Abbildung aus der auch die Lage des Motorsteckers hervorgeht.

Bei Bestellung von Motoranbauten ohne Motor erfolgt die Endmontage durch den Kunden.

Alle erforderlichen Hinweise und Parameter zum fachgerechten Anbau werden mitgeliefert.

Wählbare Optionen

Schalter und Dose mit Stecker liegen der Lieferung lose bei.

Schmierung

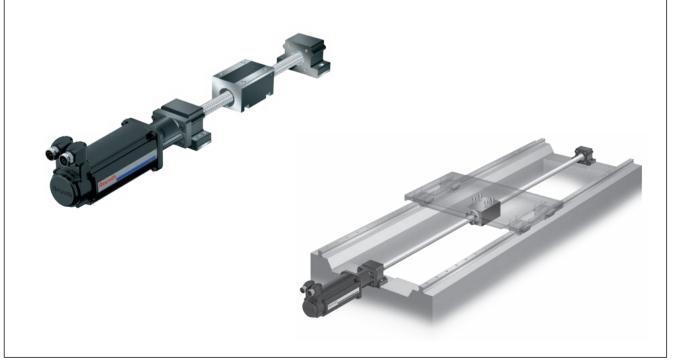
Antriebseinheiten sind bei Auslieferung grundbefettet. Weiterführende Informationen siehe Kapitel "Schmierung".

Dokumentation

Jeder Antriebseinheit liegen bei Auslieferung die zum Produkt gehörenden Dokumentationen bei.

Produktbeschreibung

Eigenschaften


- Antriebseinheiten AOK in offener Bauform sind einbaufertige Antriebsachsen bestehend aus Kugelgewindetrieb mit Mutter und Stehlagern sowie optional wählbarem Mutterngehäuse
- Drei abgestimmte Baugrößen in beliebigen Längen bis L_{max}
- Ausführung mit Fest- und Loslager oder auch nur mit Festlager verfügbar
- Antrieb über Präzisions-Kugelgewindetrieb in gerollter Ausführung nach DIN 69051
 - Spindel in Toleranzklasse T5 oder T7 verfügbar
 - Verschiedene wählbare Mutternausführungen, abhängig von Größe und Steigung
 - Zwischen drei unterschiedlichen Vorspannungen wählbar (C1, C2 und C3)
- Stehlager in Aluminium- oder Stahl-Ausführung erhältlich
- Hohe Verfahrgeschwindigkeiten durch große Steigungen bei gleichzeitig hoher Präzision über große Längen
- Muttern optional mit Vorsatz-Schmiereinheit wählbar für längere Nachschmierintervalle

Weitere Highlights

- Flexibel durch wählbare Optionen
- Einfacher Motoranbau über Zentrierung und Gewinde
- Übersichtliche technische Daten für die komplette Einheit als "Linearsystem ohne Führung"
- Typenschild mit Parametern zur einfachen Inbetriebnahme

Anbauteile

- Motoranbauten mit Flansch und Kupplung oder über Riemenvorgelege
- Anbausätze für Motoren nach Kundenwunsch
- Wartungsfreie Servomotore mit wählbarer Bremse und integriertem Feedback

Übersicht Komponenten Kugelgewindetrieb

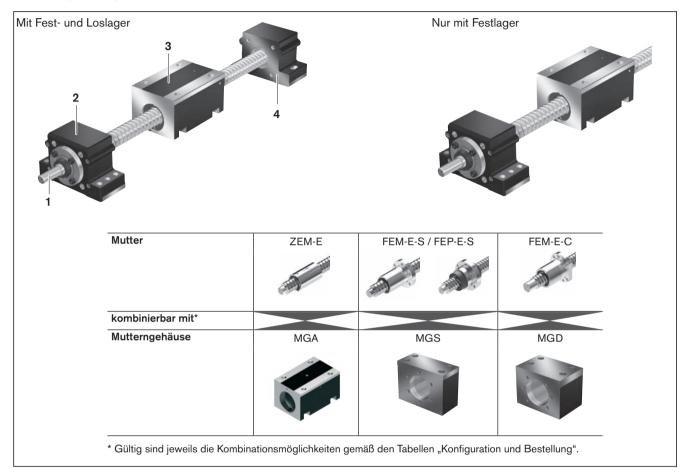
Komponenten		Kurzbezeichnung	Beschreibung
Ausführung	A TOP A	Fest-/Loslager	Mit Stehlagergehäusen auf Fest- und Loslagerseite
	2	nur Festlager	Mit Stehlagergehäusen nur auf Festlagerseite
Mutter		ZEM-E	Zylindrische Einzelmutter (nur in Kombination mit Mutterngehäuse MGA)
-		FEM-E-S	Flansch- Einzelmuttern (Rexroth Anschlussmaße)
-		FEP-E-S	
-		FEM-E-C	Flansch- Einzelmutter (Anschlussmaße ähnlich DIN 69051, Teil 5)
Vorsatz- schmiereinheit		VSE	Vorsatzschmiereinheit zum langfristigen, wartungsfreien Betrieb des Kugelgewindetriebes. (Lieferung nur in Kombination mit einer grundbefetteten Mutter)
Mutterngehäuse		MGA	Mutterngehäuse aus Aluminium, geeignet für zylindrische Einzelmutter ZEM-E
-	0	MGS	Mutterngehäuse aus Stahl, geeignet für Flansch-Einzelmutter FEM-E-S / FEP-E-S
		MGD	Mutterngehäuse aus Stahl, geeignet für Flansch-Einzelmutter FEM-E-C

Vorspannung Muttern

Vorspannungsklassen Definition C1 Leichte Vorspannung C2 Mittlere Vorspannung C3 Hohe Vorspannung

Genauigkeit Präzisions-Spindeln

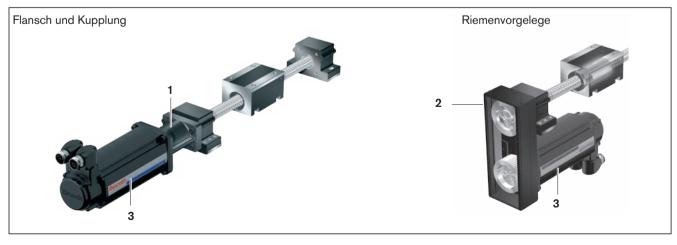
Toleranzklasse	Zulässige Abweichung der Wegschwankung
	über 300 mm (v300p)
T5	23 μm / 300 mm
T7	52 μm / 300 mm


Weiterführende Informationen siehe Katalog "Gewindetriebe".

10 Antriebseinheiten

Antriebseinheiten AOK

Aufbau

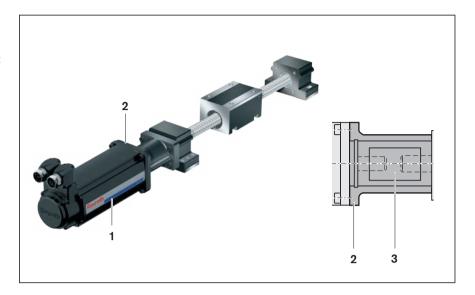

- 1 Kugelgewindetrieb
- 2 Stehlager Festlagerseite (Antriebsseite)
- 3 Gehäuse mit Mutter
- 4 Stehlager Loslagerseite

Motoranbau

Anbauteile:

- 1 Flansch und Kupplung
- 2 Riemenvorgelege
- 3 Motor

Aufbau Flansch und Kupplung


Bei allen Antriebseinheiten kann ein Motor über Flansch und Kupplung angebaut werden.

Der Flansch dient zur Befestigung des Motors an der Antriebseinheit und als geschlossenes Gehäuse für die Kupplung.

Mit der Kupplung wird das Antriebsmoment des Motors verspannungsfrei auf den Antriebszapfen der Antriebseinheit übertragen.

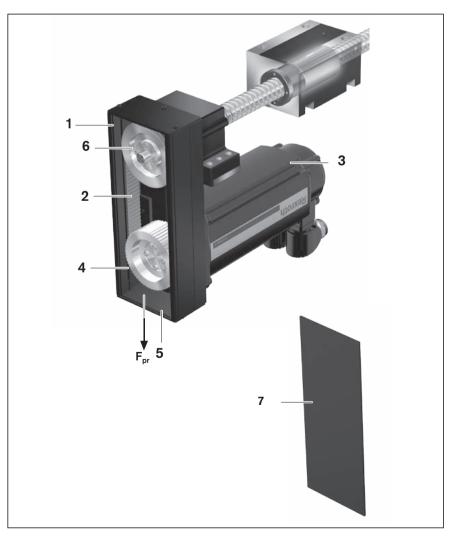
Unsere Standardkupplungen kompensieren die Wärmeausdehnung des Systems.

- 1 Motor
- 2 Flansch
- 3 Kupplung

Aufbau Riemenvorgelege

Bei allen Antriebseinheiten besteht die Möglichkeit, den Motor über ein Riemenvorgelege anzubauen.

Dadurch ist die Gesamtlänge kürzer als beim Motoranbau mit Flansch und Kupplung.


Das kompakte geschlossene Umlenkgehäuse dient als Riemenschutz und Motorträger.

Außerdem sind verschiedene Übersetzungen lieferbar (größenabhängig):

- -i = 1
- -i = 2

Das Riemenvorgelege ist in vier Richtungen montierbar:

- unten, oben (RV01 und RV02)
- links, rechts (RV03 und RV04)
- 1 Umlenkgehäuse aus eloxiertem Aluminiumprofil
- 2 Zahnriemen
- 3 Motor
- **4** Vorspannen des Zahnriemens: Vorspannkraft F_{pr} am Motor aufbringen (F_{pr} wird bei Lieferung bekannt gegeben)
- 5 Deckel
- 6 Befestigung der Riemenräder mit Spannsätzen
- 7 Abdeckblech Riemenvorgelege

Antriebseinheiten AOK

Technische Daten

Kapitel "Berechnung" beachten.

Allgemeine technische Daten

AOK	BASA	Dynamisc	he Tragzahl	С		Min. Verfahr- weg	Max. Läi	-		Längen- zuschlag		tter	
		ZEM-E ²⁾	FEM-E-S/ FEP-E-S ¹⁾	FEM-E-C	Fest- lager		Fest-/ Los- lager	Nur Fest- lager	Fest-/ Los- lager		Mutter FEM-E-S FEP-E-S ¹⁾	FEM-E-C	
	d ₀ x P (mm)	1	(N)	(N)	(N)	s _{min} (mm)				L _{ad} (mm)	L _c (mm)		
AOK-020	20 x 5 20 x 10 20 x 20 20 x 40 ¹⁾	14 100	14 300 14 100 9 100 14 000	14 100 13 300	17 000	100	3 000	750	120	70	40 60 57 57	40 60 77 -	
AOK-032	32 x 5 32 x 10 32 x 20 32 x 32	31 700 19 700	21 600 31 700 13 500 13 400	31 700 19 700	26 000	150	4 000	1 500	128	74	48 77 64 88	48 77 84 120	
AOK-040	40 x 5 40 x 10 40 x 20 40 x 40	29 100 50 000 37 900 37 000	29 100 50 000 37 900 25 500	29 100 50 000 37 900 37 000	29 000	180	5 000	2 000	160	90	54 70 88 102	54 70 88 142	

Massenberechnung

(ohne Motoranbau, ohne Motor)

$$\mathbf{m_s} = \mathbf{k_g}_{\, \text{fix}} + \mathbf{k_g}_{\, \text{var}} \cdot \mathbf{L} + \mathbf{m_{ca}}$$

Antriebsdaten

AOK	BASA	Konstanten Ma	assenträgheitsr	noment					
		Mutter		Mutter und Ge	häuse				
		FEM-E-S	FEM-E-C	ZEM-E	FEM-E-S/	FEM-E-C			
		FEP-E-S1)		+ MGA	FEP-E-S1)	+ MGD			
					+ MGS				
	d _o x P	k _{J fix}	\mathbf{k}_{Jvar}	k _{J m}					
	(mm)	(kgmm²)	(kgmm²)	(kgmm²)	(kgmm²)	(kgmm²)	(kgmm)	(mm²)	
AOK-020	20 x 5	15,5	15,6	16,3	16,2	16,3	0,1004	0,6333	
	20 x 10	16,3	16,4	19,3	18,9	19,4	0,1004	2,5330	
	20 x 20	21,4	20,3	31,6	33,4	32,3	0,1004	10,1321	
	20 x 40 ¹⁾	36,0	_	73,1	83,8	-	0,1004	40,5285	
4OK-032	32 x 5	129,9	129,9	131,6	131,0	131,4	0,7117	0,6333	
	32 x 10	131,3	131,6	137,8	135,8	137,4	0,7117	2,5330	
	32 x 20	139,9	138,6	163,6	163,8	161,6	0,7117	10,1321	
	32 x 32	165,8	160,9	217,5	227,2	219,8	0,7117	25,9382	
AOK-040	40 x 5	374,8	375,0	378,3	376,3	377,3	1,7827	0,6333	
	40 x 10	340,7	340,4	353,4	349,8	349,6	1,6068	2,5330	
	40 x 20	353,0	352,0	401,7	389,4	388,6	1,6068	10,1321	
	40 x 40	482,9	425,0	597,3	733,7	571,3	1,6068	40,5285	

¹⁾ Mutternausführung FEP-E-S nur bei BASA 20x40

Bosch Rexroth AG, R999001325 (2017-05)

²⁾ Mutternausführung ZEM-E nur in Verbindung mit Gehäuse MGA verfügbar

Länge Mut	tter und Gel	näuse	Bewegte E	igenmasse				Massenk	constante	n		
			Mutter		Mutter und Gehäuse			Fest-/Loslager		Nur Festlager		
ZEM-E	FEM-E-S/	FEM-E-C	FEM-E-S	FEM-E-C	ZEM-E	FEM-E-S/	FEM-E-C	Alu	Stahl	Alu	Stahl	
+ MGA	FEP-E-S ¹⁾	+ MGD	FEP-E-S ¹⁾		+ MGA	FEP-E-S ¹⁾	+ MGD					
* * * * * * * * * * * * * * * * * * *	+ MGS	+++										
L _c	L _c	L _c	m _{ca}	m _{ca}	m _{ca}	m _{ca}		\mathbf{k}_{gfix}				\mathbf{k}_{gvar}
(mm)	(mm)		(kg)	(kg)	(kg)	(kg)		(kg)	(kg)	(kg)	(kg)	(kg/mm)
100	52	67	0,28	0,31	1,55	1,33	1,49	3,13	3,13 7,03	1,89	3,77	0,0021
100	60	67	0,36	0,40	1,57	1,41	1,58					
100	78	77	0,60	0,49	1,61	1,78	1,67					
100	63	_	0,51	-	1,42	1,69	_					
150	63	83	0,54	0,62	3,33	2,29	2,89	4,14	9,65	2,48	4,91	0,0056
150	77	83	0,72	0,84	3,27	2,47	3,11					
150	75	84	1,02	0,90	3,36	3,39	3,17					
150	114	120	1,40	1,21	3,39	3,77	3,48					
 180	75	95	0,71	1,03	6,23	3,08	4,64	⊣ ′ ∣ ′	14,98	4,12	7,68	0,0088
180	80	95	1,29	1,19	6,29	4,88	4,80					
180	88	95	1,54	1,44	6,34	5,13	5,05					
 180	151	142	3,59	2,16	6,41	9,78	5,77					

	Reibmoment Fest-/Loslager oder nur Febei Vorspannungsklasse C1	estlager C2 oder C3	Maximal zulässige Beschleunigung	Maximales Antriebsmoment	Maximale Geschwindigkeit		
	M _{Rs} (Nm)	M _{Rs} (Nm)	a _{max} (m/s²)	M _P (Nm)	ν _{max} (m/s)		
	0,34 0,36	0,51 0,54	39,8 50,0				
	0,35 0,27	0,51	50,0 50,0				
	0,72 0,79	1,08 1,32	17,9 30,7				
	0,71	1,04	50,0	siehe Diagramme	siehe Diagramme		
	0,70	1,04	50,0 12,2				
- - -	1,37	2,31	16,8				
	1,26 1,26	1,98 1,95	33,0 50,0				

14 Antriebseinheiten

Antriebseinheiten AOK

Technische Daten

Kapitel "Berechnung" beachten.

Antriebsdaten bei Motoranbau über Riemenvorgelege

AOK	Motor	BASA	bis L ²⁾ (mr	n)	M _{sd} 1)		J _{sd}		M_{Rsd}	m _{sd}	F	B _t	
		(mm)	Fest-/	nur	(Nm)		(10 ⁻⁶ kgr	n²)	(Nm)	(kg)	(mm)		
		d ₀ x P	Loslager	Festlager	i = 1	i = 2	i =1	i = 2				i = 1	i = 2
AOK-020	MSK 040C,	20 x 5	1 500	300	6,00	_	240	_	0,40	1,24	88	16 AT5	_
	MSM 041B	20 x 10	1 900	400	7,90								
		20 x 20	2 600	600	7,94								
		20 x 40	2 200	500	7,94								
	MSK 050C	20 x 5	1 500	300	6,00	_	1 420	_	0,45	3,20	116	25 AT5	_
		20 x 10	1 900	400	7,90								
		20 x 20	2 500	600	8,70								
		20 x 40	2 100	500	8,90								
AOK-032	MSK 060C	32 x 5	2 500	600	19,10	9,55	1 400	260	0,50	3,20	116	25 AT5	32 AT5
		32 x 10	3 400	700	19,21	12,30							
		32 x 20	4 000	1 100	19,21	12,30							
		32 x 32	4 000	1 500	19,21	12,30							
AOK-040	MSK 076C	40 x 5	3 500	800	25,60	12,80	7 780	1 260	0,60	8,40	160	50	50
		40 x 10	3 000	700	51,20	25,60						AT10	AT10
		40 x 20	3 100	700	99,30	49,65]						
		40 x 40	4 400	1 100	99,30	49,65							

¹⁾ Werte für ${\rm M}_{\rm sd}$ ohne Berücksichtigung des Motormoments.

Antriebsdaten bei Motoranbau über Flansch und Kupplung

AOK	Motor	Kupplung		Flansch und Kupplung
		M _{cN}	J _c	m _{fc}
		(Nm)	(10 ⁻⁶ kgm²)	(kg)
AOK-020	MSM 041B	14,5	63	0,85
	MSK 040C	19,0	57	0,55
	MSK 050C	50,0	200	2,00
AOK-032	MSK 060C	50,0	200	1,80
	MSK 076C	98,0	390	2,40
AOK-040	MSK 076C	98,0	390	2,80

²⁾ Bei größeren Längen wird das zulässige Antriebsmoment vom längenvariablen Wert M_p der Antriebseinheit gemäß Diagramm bestimmt

→ Kapitel "Berechnungsgrundlagen".

Benennungen

a_{max} = Maximale Beschleunigung

B₁ = Riementyp

C = Dynamische Tragzahl

 d_0 = Nenndurchmesser

= Breite Umlenkgehäuse

i = Übersetzung Riemenvorgelege

J_c = Massenträgheitsmoment der Kupplung

 $J_{\rm sd}~=$ Reduziertes Massenträgheitsmoment Riemenvorgelege am Motorzapfen

 $k_{q fix}$ = Konstante für fixen Anteil an der Masse

k_{g var} = Konstante für längenvariablen Anteil an der Masse

 $\vec{k_{J}}_{fix}$ = Konstante für fixen Anteil am Massenträgheitsmoment

k_{J var} = Konstante für längenvariablen Anteil am Massenträgheitsmoment

 $k_{J\,m}\,\,=\,$ Konstante für massenspezifischen Anteil am Massenträgheitsmoment

L = Länge

L_{ad} = Längenzuschlag

L_c = Länge Mutter/Länge Mutter und Gehäuse

 L_{max} = Maximale Länge

M_n = Antriebsmoment

M_{Rs} = Reibmoment System

M_{cN} = Nennmoment der Kupplung

 $M_{Rsd} = Reibmoment Riemenvorgelege am Motorzapfen$

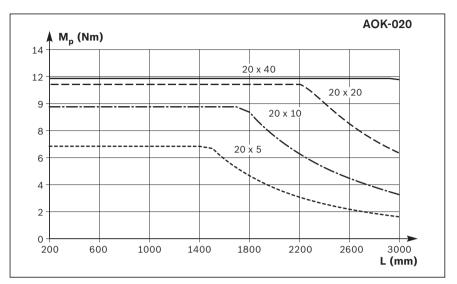
M_{sd} = Maximal zulässiges Antriebsdrehmoment Riemenvorgelege

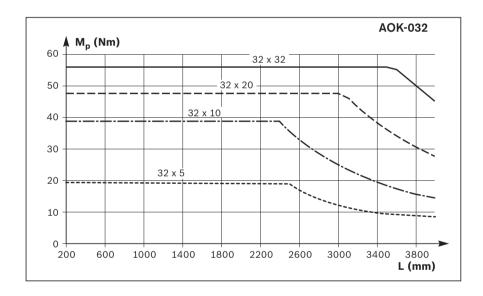
m_{fc} = Masse Flansch und Kupplung

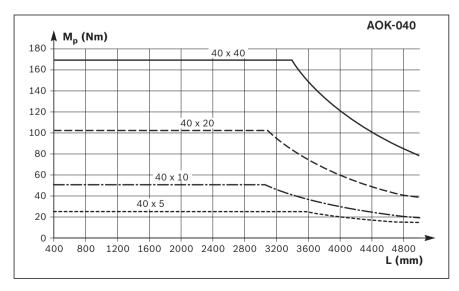
m_{sd} = Masse Riemenvorgelege

m_{ca} = Bewegte Eigenmasse

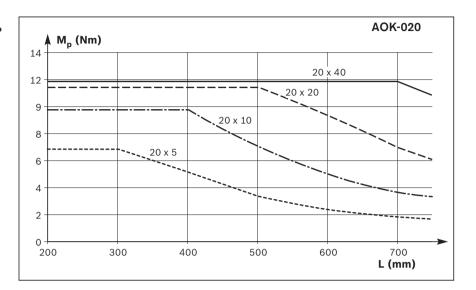
P = Steigung

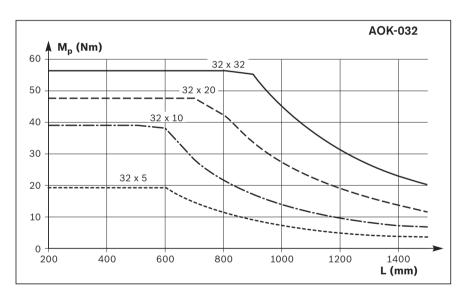

s_{min} = minimaler Verfahrweg


v_{max} = Maximale Geschwindigkeit

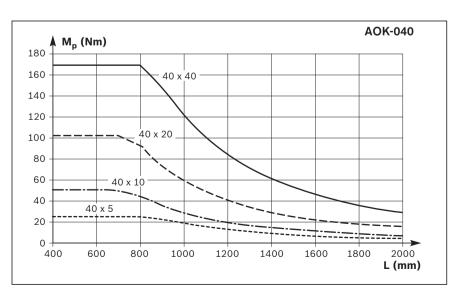

Technische Daten

Zulässiges Antriebsmoment M_P mit Fest- und Loslager





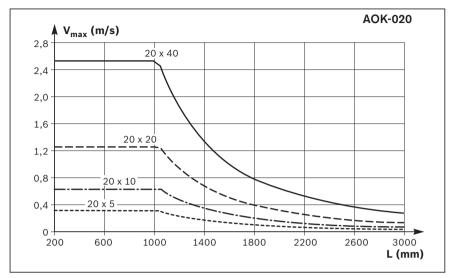
Zulässiges Antriebsmoment M_P nur mit Festlager

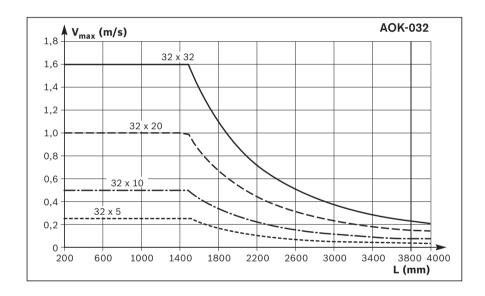


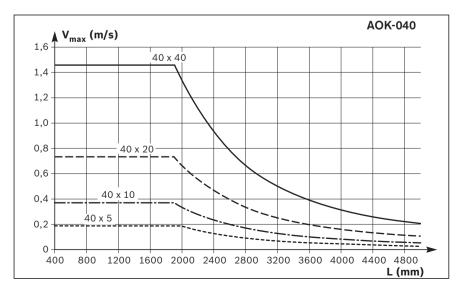
Hinweis

Die dargestellten Werte von M_{p} gelten unter folgenden Voraussetzungen:

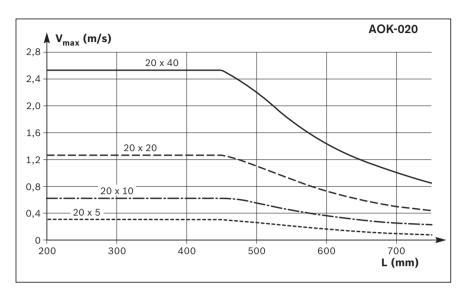
 keine Radialbelastung am Spindelzapfen

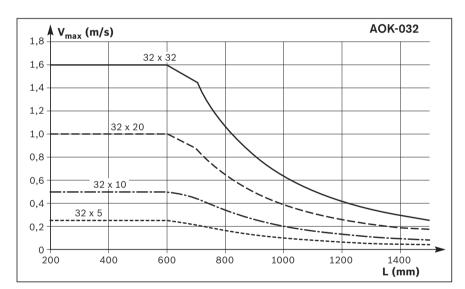


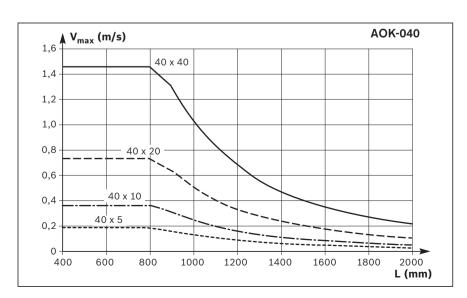

18


Technische Daten

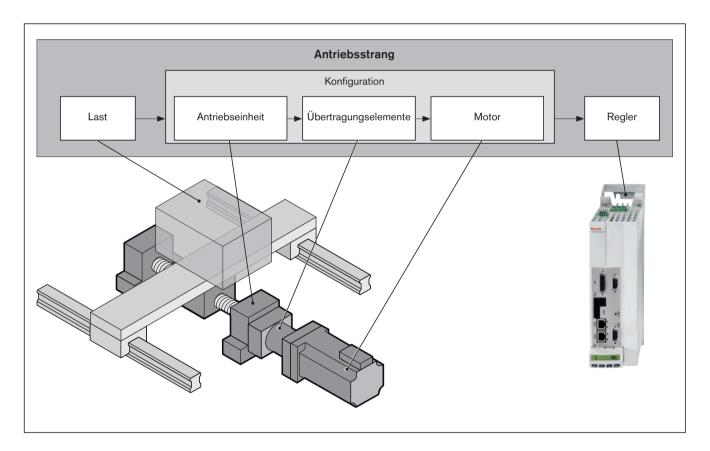
Zulässige Geschwindigkeit v_{max} mit Fest- und Loslager







Zulässige Geschwindigkeit v_{max} nur mit Festlager



Berechnung

Berechnungsgrundlagen	Seite 20
Lebensdauer der Antriebseinheit	Seite 21
Lebensdauer des Kugelgewindetriebs bzw. des Festlagers	Seite 21
Antriebsauslegung	Seite 23
Grundlagen	Seite 23
Antriebsauslegung am Referenzpunkt Motorwelle	Seite 24
Grobe Vorauswahl des Motors	Seite 2426
Rerechnungsheisniel	Seite 28

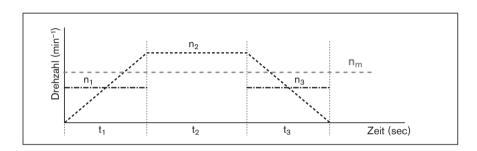
Berechnungsgrundlagen

Die korrekte Dimensionierung und Beurteilung einer Anwendung erfordert die strukturierte Betrachtung des gesamten Antriebsstrangs.

Das Grundelement des Antriebsstrangs bildet die Konfiguration, die die Antriebseinheit,, das Übertragungselement (Kupplung oder Riemenvorgelege) und den Motor umfasst und in dieser Konstellation gemäß Katalog bestellt werden kann.

Berechnung

Lebensdauer der Antriebseinheit


Für die in einer Antriebseinheit enthaltenen Wälzlagerstellen kann die Lebensdauer anhand nachfolgender Formeln ermittelt werden. Die lebensdauerrelevanten Wälzlagerstellen in einer Antriebseinheit mit Kugelgewindetrieb sind der Kugelgewindetrieb (Mutter) und das Festlager.

Die rechnerische Lebensdauerangabe für die Antriebseinheit wird durch den kleinsten der separat ermittelten Lebensdauerwerte für Kugelgewindetrieb oder Festlager bestimmt.

Lebensdauer des Kugelgewindetriebs bzw. des Festlagers

Bei veränderlichen Betriebsbedingungen (Drehzahl und Belastung veränderlich) müssen bei der Berechnung der Lebensdauer die mittleren Werte $\mathbf{F}_{\mathbf{m}}$ und $\mathbf{n}_{\mathbf{m}}$ verwendet werden.

Bei veränderlicher Drehzahl gilt für die mittlere Drehzahl \mathbf{n}_{m} :

$$n_{m} = \frac{|n_{1}| \cdot t_{1} + |n_{2}| \cdot t_{2} + ... + |n_{n}| \cdot t_{n}}{t_{ges}}$$

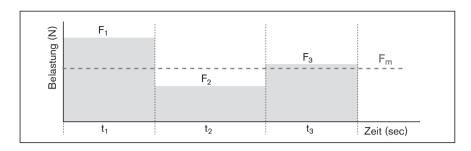
in den Phasen 1 ... n
$$(min^{-1})$$

 $n_m = Mittlere Drehzahl (min^{-1})
 $t_1, t_2, ... t_n = Zeitanteil der Phasen 1 ... n (sec)$
 $t_{nes} = Summe Zeitanteile (sec)$$

 $n_{1, n_{2, \dots}} n_{n} = Drehzahlen$

$$t_{ges} = t_1 + t_2 + ... + t_n$$

Drehzahl in Beschleunigungs- und Bremsphasen $\mathbf{n}_{1...n}$:


$$n_{1...n} = \frac{n_{A1...n} + n_{E1...n}}{2}$$

$$\begin{split} &n_{A1\,\dots\,n} = \text{Anfangsdrehzahl in Phase 1 ... n (min}^{-1}) \\ &n_{E1\,\dots\,n} = \text{Enddrehzahl in Phase 1 ... n} \end{aligned}$$

Antriebseinheiten AOK

Berechnung

Bei veränderlicher Belastung und veränderlicher Drehzahl gilt für die mittlere Belastung $\mathbf{F}_{\mathbf{m}}$:

$$F_{m} = \sqrt[3]{\left|F_{1}\right|^{3} \cdot \frac{|n_{1}|}{n_{m}} \cdot \frac{t_{1}}{t_{ges}}} + \left|F_{2}\right|^{3} \cdot \frac{|n_{2}|}{n_{m}} \cdot \frac{t_{2}}{t_{ges}} + ... + \left|F_{n}\right|^{3} \cdot \frac{|n_{n}|}{n_{m}} \cdot \frac{t_{n}}{t_{ges}}$$

Nominelle Lebensdauer

Nominelle Lebensdauer in Umdrehungen:

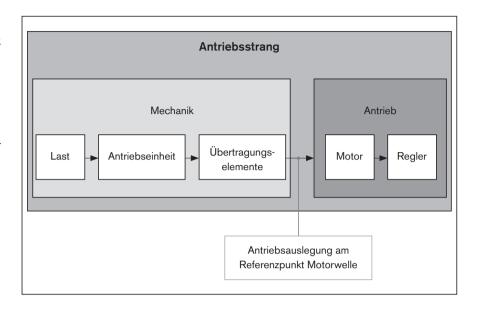
Nominelle Lebensdauer in Stunden:

$$L = \left(\frac{C}{F_m}\right)^3 \cdot 10^6$$

$$L_h = \ \frac{L}{n_m \cdot 60}$$

$$\begin{array}{llll} C & = & \text{Dynamische Tragzahl} & & (N) \\ F_{1_1}F_{2_1....}F_{n} & = & \text{Axialbelastung während der Phasen 1 ... n} & (N) \\ F_{m} & = & \text{Dynamisch äquivalente Axialbelastung} & (N) \\ n_{1_1}n_{2_1....}n_{n} & = & \text{Drehzahlen in den Phasen 1 ... n} & (min^{-1}) \\ n_{m} & = & \text{Mittlere Drehzahl} & (min^{-1}) \\ t_{1_1}t_{2_1....}t_{n} & = & \text{Zeitanteil der Phasen 1 ... n} & (sec) \\ t_{ges} & = & \text{Summe Zeitanteile} & (sec) \\ L & = & \text{Nominelle Lebensdauer} & (-) \\ L_{h} & = & \text{Nominelle Lebensdauer} & (h) \\ \end{array}$$

Antriebsauslegung


Grundlagen

Für die Antriebsauslegung lässt sich der Antriebsstrang in die Bereiche Mechanik und Antrieb unterteilen.

Der Bereich **Mechanik** umfasst die Komponenten Antriebseinheit und Übertragungselemente (Riemenvorgelege, Kupplung) sowie die Berücksichtigung der Last.

Als elektrischer **Antrieb** wird eine Motor-Regler-Kombination mit den entsprechenden Leistungswerten bezeichnet. Die Auslegung bzw. Dimensionierung des elektrischen Antriebs erfolgt am Referenzpunkt Motorwelle.

Für eine Antriebsauslegung müssen sowohl Grenzwerte als auch Basiswerte berücksichtigt werden. Die Grenzwerte sind einzuhalten, um die mechanischen Komponenten vor Beschädigungen zu schützen.

Technische Daten und Formelzeichen der Mechanik

Für jede Komponente (Antriebseinheit, Kupplung, Riemenvorgelege) sind die entsprechenden maximal zulässigen Grenzwerte für Antriebsmoment und Geschwindigkeit sowie die Basiswerte Reibmoment und Massenträgheitsmoment zu verwenden. Folgende technische Daten mit den zugehörigen Formelzeichen werden für den Bereich **Mechanik** in den Grundlagenbetrachtungen der Antriebsauslegung verwendet. Die in der nachfolgenden Tabelle aufgelisteten Daten befinden sich im Kapitel "Technische Daten" oder sie werden mit Formeln gemäß den Beschreibungen auf den nachfolgenden Seiten ermittelt.

			Mechanik							
		Last	Antriebseinheit	Übertragun	gselemente					
				Kupplung	Riemenvorgelege					
Gewichtsmoment	(Nm)	M _g ⁶⁾	_	_	_					
Reibmoment	(Nm)	<u></u> 5)	M _{Rs} ³⁾	_	M _{Rsd} ³⁾					
Massenträgheitsmoment	(kgm²)	J _t 1)	J _s ²⁾	J _c ³⁾	J _{sd} ³⁾					
max. zulässige Geschwindigkeit	(m/s)	-	V _{max} ⁴⁾	_	_					
max. zulässiges Antriebsmoment	(Nm)	_	M _p ⁴⁾	M _{cN} ³⁾	M _{sd} ³⁾					

- 1) Wert gemäß Formel ermitteln
- 2) Längenabhängiger Wert, Ermittlung gemäß Formel
- 3) Wert aus Tabelle entnehmen
- 4) Längenabhängiger Wert, Ablesen aus Diagramm
- 5) Zusätzlich auftretende Prozesskräfte sind als Lastmoment zu berücksichtigen
- 6) Bei vertikaler Einbaulage: Wert gemäß Formel ermitteln

Antriebsauslegung

Antriebsauslegung am Referenzpunkt Motorwelle

Für die Antriebsauslegung müssen alle relevanten Rechenwerte der im Antriebsstrang enthaltenen mechanischen Komponenten zusammengefasst bzw. reduziert auf die Motorwelle ermittelt werden. Für eine Kombination mechanischer Komponenten innerhalb des Antriebsstrangs ergibt sich somit jeweils ein Wert für:

- Reibmoment M_R
- Massenträgheitsmoment J_{ex}
- max. zulässige Geschwindigkeit v_{mech} (max. zulässige Drehzahl n_{mech})
- max. zulässiges Antriebsmoment M_{mech}

Ermittlung der Werte für die einzelnen im Antriebsstrang enthaltenen Mechanik-Komponenten bezogen auf den Referenzpunkt Motorwelle

Reibmoment M_R

Bei Motoranbau über Flansch und Kupplung $M_R = M_{Rs}$

Bei Motoranbau über Riemenvorgelege

 $M_R = M_{Rsd} + \frac{M_{Rs}}{i}$

Massenträgheitsmoment Jex

Bei Motoranbau über Flansch und Kupplung

 $J_{ex} = J_s + J_t + J_c$

Bei Motoranbau über Riemenvorgelege $J_{ex}\!=J_{sd}+\frac{-(J_s+J_t)}{i^2}$

Ermittlung des Massenträgheitsmoments der Antriebseinheit

 $J_{\rm s}\!=\!(k_{\rm J\,fix}+k_{\rm J\,var}\!\cdot\!L)\!\cdot\,10^{-6}$

Ermittlung des translatorischen Massenträgheitsmoments der Fremdmasse

 $J_t = m_{ex} \cdot k_{Jm} \cdot 10^{-6}$

= Übersetzung des Riemenvorgeleges (-)(kgm²) = Massenträgheitsmoment der Kupplung J_c = Massenträgheitsmoment der Mechanik (kgm²) (kgm²) Massenträgheitsmoment der Antriebseinheit = Massenträgheitsmoment des Riemenvorgeleges am Motorzapfen (kgm²) = Translatorisches Fremdmassenträgheitsmoment bezogen auf den Antriebseinheits-Spindelzapfen (kgm²) k_{1 fix} = Konstante für fixen Anteil am Massenträgheitsmoment (kgmm²) k_{1 m} = Konstante für massenspezifischen Anteil am Massenträgheitsmoment (mm²)k_{I var} = Konstante für längenvariablen Anteil am Massenträgheitsmoment (kgmm) = Länge der Antriebseinheit (mm) m_{ex} = Bewegte Fremdmasse (kg) M_R = Reibmoment am Motorzapfen (Nm) M_{Rs} = Reibmoment System (Nm) M_{Rsd} = Reibmoment Riemenvorgelege am Motorzapfen (Nm)

Maximal zulässige Geschwindigkeit v_{mech}

Der jeweils kleinste Wert der zulässigen Geschwindigkeit aller im Antriebsstrang enthaltenen mechanischen Komponenten bestimmt die maximal zulässige Geschwindigkeit der Mechanik, die als Antriebsgrenze bei der Motorauslegung zu berücksichtigen ist. Die maximal zulässige Geschwindigkeit bzw. Drehzahl der Antriebseinheit mit Kugelgewindetrieb liegt systembedingt immer unter den Grenzwerten für die Komponenten Kupplung oder Riemenvorgelege und bestimmt somit die Grenze für die maximal zulässige Geschwindigkeit der Mechanik.

Maximal zulässige Geschwindigkeit

$$v_{mech} = v_{max}$$

Maximal zulässige Drehzahl

Bei Motoranbau über Flansch und Kupplung

$$n_{mech} = \frac{v_{mech} \cdot 1000 \cdot 60}{P}$$

Bei Motoranbau über Riemenvorgelege

$$n_{mech} = \frac{v_{mech} \cdot i \cdot 1000 \cdot 60}{P}$$

Maximal zulässiges Antriebsmoment M_{mech}

Der jeweils kleinste Wert (Minimum) des zulässigen Antriebsmoments aller im Antriebsstrang enthaltenen mechanischen Komponenten bestimmt das maximal zulässige Antriebsmoment der Mechanik, das als Antriebsgrenze bei der Motorauslegung zu berücksichtigen ist.

Bei Motoranbau über Flansch und Kupplung

$$M_{mech} = Minimum (M_{cN}; M_p)$$

Bei Motoranbau über Riemenvorgelege

$$M_{\text{mech}} = \text{Minimum } (M_{\text{sd}}; \frac{M_{\text{p}}}{i})$$

$$M_{cN}$$
 = Nennmoment der Kupplung (Nm)

$$M_{
m sd} = M$$
aximal zulässiges Antriebsmoment des Riemenvorgeleges (Nm)

M_{mech} = Maximal zulässiges Antriebsmoment der Mechanik (Nm)

Bei Betrachtung des kompletten Antriebsstrangs (Mechanik + Motor/Regler) kann das Maximaldrehmoment des Motors auch unterhalb der Grenze der Mechanik (M_{mech}) liegen und somit die Grenze für das maximal zulässige Antriebsmoment des Antriebsstrang bilden.

Liegt das Maximaldrehmoment des Motors über der Grenze der Mechanik (M_{mech}), dann muss das maximale Motordrehmoment auf den zulässigen Wert der Mechanik begrenzt werden!

Antriebsauslegung

Vorauswahl des Motors

Eine überschlägige Vorauswahl des Motors kann anhand folgender Bedingungen vorgenommen werden.

Bedingung 1:

Die Drehzahl des Motors muss größer oder gleich der erforderlichen Drehzahl der Mechanik sein (bis zum maximal zulässigen Grenzwert).

$$n_{max} \ge n_{mech}$$

$$n_{max}$$
 = Maximaldrehzahl des Motors (min⁻¹)

Bedingung 2:

Betrachtung des Verhältnisses der Massenträgheitsmomente von Mechanik und Motor. Das Verhältnis der Trägheitsmomente dient als Indikator für die Regelungsgüte einer Motor-Regler-Kombination. Das Massenträgheitsmoment des Motors steht in direktem Bezug zur Motorgröße.

Verhältnis der Massenträgheitsmomente

$$V = \frac{J_{ex}}{J_{m} + J_{br}}$$

Für die Vorauswahl können folgende Erfahrungswerte für eine hohe Regelungsgüte herangezogen werden. Hierbei handelt es sich nicht um starre Grenzen, jedoch erfordern Werte über diesen Grenzen eine genauere Betrachtung der Anwendung.

Anwendungsbereich	V
Handling	≤ 6,0
Bearbeitung	≤ 1,5

J_{br} = Massenträgheitsmoment der Motorbremse (kgm²)

J_{ex} = Massenträgheitsmoment der Mechanik (kgm²)

 J_{m} = Massenträgheitsmoment des Motors (kgm²)

V = Verhältnis der Massenträgheitsmomente von Antriebsstrang und Motor (-)

Bedingung 3:

Abschätzung des Drehmomentenverhältnisses vom statischen Lastmoment zum Stillstandsdrehmoment des Motors. Das Drehmomentverhältnis muss kleiner oder gleich dem empirischen Wert 0,6 sein. Durch diese Bedingung werden die noch fehlenden Dynamikwerte eines exakten Bewegungsprofils mit den erforderlichen Motormomenten überschlägig berücksichtigt.

Drehmomentverhältnis

$$\frac{M_{stat}}{M_0} \le 0.6$$

Statisches Lastmoment

$$M_{stat} = M_R + M_g$$

Gewichtsmoment

Nur bei vertikaler Einbaulage!

Bei Motoranbau über Flansch und
Kupplung: i = 1

$$M_g = \frac{P \cdot (m_{ex} + m_{ca}) \cdot g}{2000 \cdot \pi \cdot i}$$

g	= Erdbeschleunigung (= 9,81)	(m/s ²)
i	 Übersetzung des Riemenvorgeleges 	(—)
m_{ca}	 Bewegte Eigenmasse des Tischteils 	(kg)
m_{ex}	= Bewegte Fremdmasse	(kg)
M_{q}	 Gewichtsmoment am Motorzapfen 	(Nm)
M_0	 Stillstandsdrehmoment des Motors 	(Nm)
M_R	= Reibmoment am Motorzapfen	(Nm)
M_{stat}	= Statisches Lastmoment	(Nm)
Ρ	= Spindelsteigung	(mm)
π	= Kreiszahl	(—)

Im Kapitel , Konfiguration und Bestellung" können für die verschiedenen Antriebseinheit-Baugrößen standardmäßig Konfigurationen inklusive Motoranbau und Motor durch Auswählen von Optionen erstellt werden. Durch Erfüllung der oben genannten Bedingungen kann überprüft werden, ob ein in der Konfiguration ausgewählter Standardmotor von der Baugröße her grundsätzlich für die Applikation geeignet ist.

Exakte Antriebsauslegung

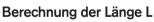
Die grobe Vorauswahl des Motors ersetzt nicht die erforderliche genaue Antriebsberechnung mit detaillierter Momenten- und Drehzahlbetrachtung. Für eine exakte Berechnung des elektrischen Antriebs mit Berücksichtigung des zugrunde liegenden Bewegungsprofils sind die Leistungsdaten aus den Katalogen "IndraDrive Cs" und "IndraDrive C" heranzuziehen. Bei der Antriebsauslegung müssen die maximal zulässigen Grenzwerte für die Geschwindigkeit, das Antriebsmoment und die Beschleunigung eingehalten werden, um die Mechanik vor Beschädigungen zu schützen.

Berechnungsbeispiel

Ausgangsdaten

Bei einer Handhabungsaufgabe in horizontaler Einbaulage soll eine Masse von 60 kg mit einer maximalen Geschwindigkeit von 0,6 m/s um 1000 mm bewegt werden. Die Masse wird über eine separate Linearführung verfahren, deren Reibkraft 200 N beträgt. Gewählt wurde aufgrund der technischen Daten und der Bauraumbedingungen:

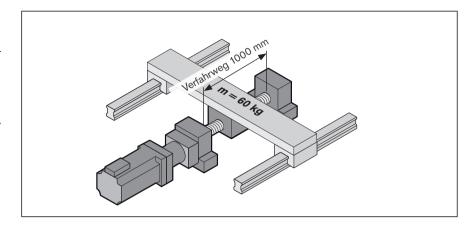
Antriebseinheit AOK-032:


- Mutternausführung FEM-E-S mit Mutterngehäuse MGS
- Mutter mit Vorspannungsklasse C1 (leichte Vorspannung)
- Motoranbau über Riemenvorgelege,
 i = 2
- mit Motor MSK 060C ohne Bremse

Abschätzung der Länge L

(Für eine erste Abschätzung wird mit der größtmöglichen Steigung und somit Länge kalkuliert, da die zulässige Geschwindigkeit bei zunehmender Länge abnehmen kann.)

Auswahl des Kugelgewindetriebes


(Vorzugsweise die kleinste Steigung wählen, da vorteilhaft bzgl. Auflösung Bremsweg, Länge).

(für gewählten BASA)

Reibmoment M_R

(Motoranbau über Riemenvorgelege)

$$L = s_{max} + L_c + L_{ad}$$

Überlauf:
$$s_e = 2 \cdot P = 2 \cdot 32 = 64 \text{ mm}$$

Verfahrweg max.:
$$s_{max} = s_{eff} + 2 \cdot s_{e}$$

$$= 1000 + 2 \cdot 64 = 1128 \text{ mm}$$

Länge:
$$L = 1128 + 114 + 128 = 1370 \text{ mm}$$

Zulässige Kugelgewindetriebe nach Diagramm "Zulässige Geschwindigkeit" bei v = 0.6 m/s und L = 1370 mm:

Gewählter Kugelgewindetrieb (kleinere Steigung):

maximal zulässige Geschwindigkeit für BASA 32 x 20 aus Diagramm:

$$v_{max} = 1.0 \text{ m/s}$$

Überlauf:
$$s_e = 2 \cdot P = 2 \cdot 20 = 40 \text{ mm}$$

 $= 1000 + 2 \cdot 40 = 1080 \text{ mm}$

Länge:
$$L = 1080 + 114 + 128 = 1322 \text{ mm}$$

$$M_R = M_{Rsd} + (M_{Rs} + M_{Rad})/i$$

Separate Führung:
$$M_{Rad} = (P \cdot F_R)/(2000 \cdot \pi)$$

 $= (20 \cdot 200)/(2000 \cdot \pi)$

= 0,64 Nm

Antriebseinheit: $M_{Rs} = 0,71 \text{ Nm}$

Riemenvorgelege: $M_{Rsd} = 0,50 \text{ Nm } (i = 2)$

Reibmoment: $M_R = 0.50 + (0.71 + 0.64)/2 = 1.175 \text{ Nm}$

Massenträgheitsmoment Jex

(Motoranbau über Riemenvorgelege)

$$J_{ex} = J_{sd} + \frac{(J_s + J_t)}{i^2}$$

Riemenvorgelege: $J_{sd} = 260 \cdot 10^{-6} \text{ kgm}^2$

Antriebseinheit: $J_s = (k_{J fix} + k_{J var} \cdot L) \cdot 10^{-6}$

 $= (163.8 + 0.7117 \cdot 1322) \cdot 10^{-6}$

$$= 1104,67 \cdot 10^{-6} \text{ kgm}^2$$

Fremdmasse: $J_t = m_{ex} \cdot k_{Jm} \cdot 10^{-6}$

 $= 60 \cdot 10{,}1321 \cdot 10^{-6}$

 $= 607,93 \cdot 10^{-6} \text{ kgm}^2$

Trägheitsmoment: $J_{ex} = 260 \cdot 10^{-6} + \frac{(1104,67 \cdot 10^{-6} + 607,93 \cdot 10^{-6})}{22}$

 $= 688,15 \cdot 10^{-6} \text{ kgm}^2$

Maximal zulässige Drehzahl

n_{mech}

(Motoranbau über Riemenvorgelege) Grenzwert Mechanik $n_{mech} = \frac{(v_{mech} \cdot i \cdot 1000 \cdot 60)}{P}$

Max. zul. Geschwindigkeit: $v_{mech} = v_{max} = 1 \text{ m/s}$

Max. zul. Drehzahl: $n_{mech} = \frac{(1 \cdot 2 \cdot 1000 \cdot 60)}{20}$ = 6000 min⁻¹

Maximale Drehzahl der Anwendung n_{mech}

(Motoranbau über Riemenvorgelege) Grenzwert Anwendung Geschwindigkeit: $v_{mech} = 0.6 \text{ m/s}$

Drehzahl: $n_{mech} = \frac{0.6 \cdot 2 \cdot 1000 \cdot 60}{20}$

= 3600 min⁻¹

Berechnungsbeispiel

Maximal zulässiges Antriebsmoment M_{mech}

(Motoranbau über Riemenvorgelege) Grenzwert Mechanik

 $M_{mech} = Minimum (M_{sd}; \frac{M_p}{i})$

 $M_{sd} = 12,3 \text{ Nm (Übersetzung i} = 2 \text{ für MSK 060C)}$ Riemenvorgelege:

 $M_p = 47 \text{ Nm}$ Antriebseinheit:

 $M_{mech} = Minimum (12,3; \frac{47}{2})$ Antriebsmoment: = Minimum (12,3; 23,5)

= 12,3 Nm

Überprüfung der Motorvorauswahl

gewählter Motor: MSK 060C ohne Bremse

Bedingung 1:

Drehzahl: $n_{max} \ge n_{mech}$

6000 ≥ 3600 Bedingung erfüllt – Motorauswahl in Ordnung

Bedingung 2:

Trägheitsmomentenverhältnis: V = $\frac{J_{ex}}{J_m + J_{br}}$ Motorträgheit: $J_m = 800 \cdot 10^{-6} \, kgm^2$

 $J_{br} = 0 \cdot 10^{-6} \text{ kgm}^2 \text{ (ohne Bremse)}$ Bremsenträgheit:

 $V = \frac{688,15 \cdot 10^{-6}}{(800 \cdot 10^{-6} + 0 \cdot 10^{-6})}$ Trägheitsverhältnis:

= 0.86

V ≤ 6 Bedingung Handling:

 $0.86 \le 6$ Bedingung erfüllt – Motorauswahl in Ordnung

Bedingung 3:

 $\frac{M_{stat}}{M_0} \leq 0,\!6$ Drehmomentenverhältnis:

 $M_{stat} = M_R + M_g$ (Horizontale Einbaulage $M_g = 0$) Statisches Lastmoment:

= 1,175 Nm

Stillstandsdrehmoment

 $M_0 = 8 \text{ Nm}$ des Motors:

 $\frac{1,175}{2}$ = 0,15 Drehmomentenverhältnis:

0,15 ≤ 0,6 Bedingung erfüllt - Motorauswahl in Ordnung

Alle drei Bedingung erfüllt

gewählter Motor für die Applikation geeignet.

Ergebnis

Antriebseinheit AOK-032

 $\begin{array}{lll} \text{Länge:} & L &=& 1322 \text{ mm,} \\ \text{Verfahrweg max.:} & s_{\text{max}} &=& 1080 \text{ mm} \\ \text{Tischteillänge:} & L_{\text{ca}} &=& 114 \text{ mm} \end{array}$

Kugelgewindetrieb: Nenndurchmesser: $d_0 = 32 \text{ mm}$

Steigung: P = 20 mm

Motoranbau über Riemenvorgelege, Übersetzung i = 2 Vorauswahl Motor: MSK 060C ohne Bremse

Für die exakte Auslegung des elektrischen Antriebs ist stets die Kombination Motor-Regelgerät zu betrachten, da die Leistungsdaten (z.B. maximale Nutzdrehzahl und maximales Drehmoment) vom verwendeten Regelgerät abhängig sind.

Hierbei sind folgende Daten zu berücksichtigen:

Reibmoment: $M_R = 1,175 \text{ Nm}$

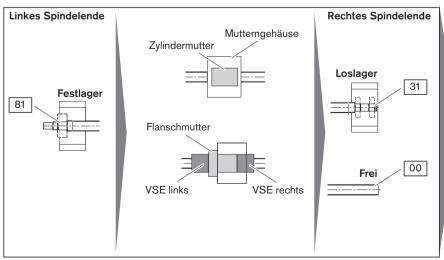
Massenträgheitsmoment: $J_{ex} = 688,15 \cdot 10^{-6} \text{ kgm}^2$

Geschwindigkeit: $v_{mech} = 0.6 \text{ m/s (} n_{mech} = 3600 \text{ min}^{-1} \text{)}$

Grenzwert für Antriebsmoment: $M_{mech} = 12,3 \text{ Nm}$

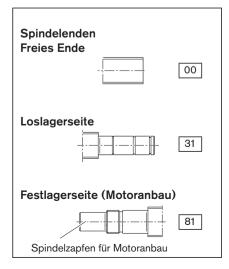
Das Motormoment muss antriebseitig auf 12,3 Nm begrenzt werden!

Grenzwert für Beschleunigung: $a_{max} = 50 \text{ m/s}^2$


Grenzwert für Geschwindigkeit: $v_{max} = 1 \text{ m/s } (n_{mech} = 6000 \text{ min}^{-1})$

Neben dem Vorzugstyp MSK 060C können auch andere Motoren mit identischen Anbauabmessungen adaptiert werden, wobei die Grenzwerte nicht überschritten werden dürfen.

AOK-020


Konfiguration und Bestellung

Kurzbezeichnung, Länge: AOK-020-NN-1, mm	Antrieb BASA						é								
		Größe				Tolera klasse		Standard Dichtung	Schmie		şt		nnungsk	dasse	
	Mutter	20 x 5	20 x 10	20 x 20	20 x 40				Grundbefettet	VSE-Links	VSE-Rechts	C1 (leicht)	C2 (mittel)	C3 (hoch)	
Ausführung Fest- und	ZEM-E	01	04	02	_		T7								
Loslager		-	-	-	03	T5		1	1	_	_	3	6	2	
	FEM-E-S	11	-	-	-		T7			2	3		6		
A TOP OF THE PROPERTY OF THE P		- 1	13	-	-	T5		1	1	-	-	3		2	
		-	-	12	-					2	3				
2	FEP-E-S	-	_	_	33	T5	T7	1	1	_	_	3	6	2	
	FEM-E-C	21	-	-	-		Т7	1	1	2	3		6		
		_	23	-	-	T5				-	-	3		2	
		_	-	22	_					2	3				
Ausführung nur mit	ZEM-E	06	09	07	_										
Festlager		-	-	-	08	T5	T7	1	1	_	_	3	6	2	
	FEM-E-S	16	-	-	-					2	_				
		_	18	-	-	T5	T7	1	1	-	-	3	6	2	
No.		_	-	17	-					2	_				
3	FEP-E-S	-	_	-	38	T5	T7	1	1	_	_	3	6	2	
	FEM-E-C	26	-	-	-					2	-		6		
		_	28	-	-	T5	T7	1	1	-	_	3		2	
		_	_	27	_					2	_				

	Steh- lager				Spindelenden		Spindelenden		Spindelenden		Spindelenden		Spindelenden		Spindelenden		Spindelenden		Spindelenden		Spindelenden		Spindelenden		Spindelenden		Spindelenden		Spindelenden			Mutter	ngeh	äuse	Moto	Motoranbau Ausführung für Mot						Motor		Doku	mentation
			Ę		ohne	mit	Form			Ausführu	ng	gunz	atz 1)	für Motor	ohne Bren	mit nse	ф=	=																											
	Links	Rechts	Aluminium	Stahl								Übersetzung	Anbausatz 1)				Standard- protokoll	Mess- protokoll																											
	81	31	02	12	-	01	MGA	-	nscn	OF01																																			
					-	02			onne rianscn	Į		_	00	_	00	0																													
	81	31	02	12	00	11	MGS	-			9																																		
	01	01	02	12	00	12		Ш_				r																																	
	81	31	02	12	00	13		-	ا ي	MF01			06	MSM 041B ²⁾	110	111																													
									mit Flanscn -	^ I		_	02	MSK 040C ²⁾	86	87																													
	81	31	02	12	00	21	MGD	1	Ē				07	MSK 050C ²⁾	88	89																													
					00	22		Ш									01	03 Steigungsab-																											
	81	00	01	11	-	01	MGA	П-		DVO	Pl/00							weichung																											
	01	00	01	11	-	12				RV01	RV02		32	MSM 041B ²⁾	110	111																													
	0.4	0.0	0.4		00	11	MGS		ege																																				
	81	00	01	11	00	14 12	^•		orgei	\checkmark																																			
	81	00	01	11	00	13			mit Kiemenvorgelege	RV03	RV04	i = 1	30	MSK 040C ²⁾	86	87																													
	81	00	01	11	00	21 23 12	MGD		Ε				23	MSK 050C ²⁾	88	89																													

- 1) Anbausatz auch ohne Motor lieferbar (Bei Bestellung: für Motor "00" eintragen)
- 2) Empfohlener Motor (Motordaten und Typenbezeichnung 🗪 "Motoren")

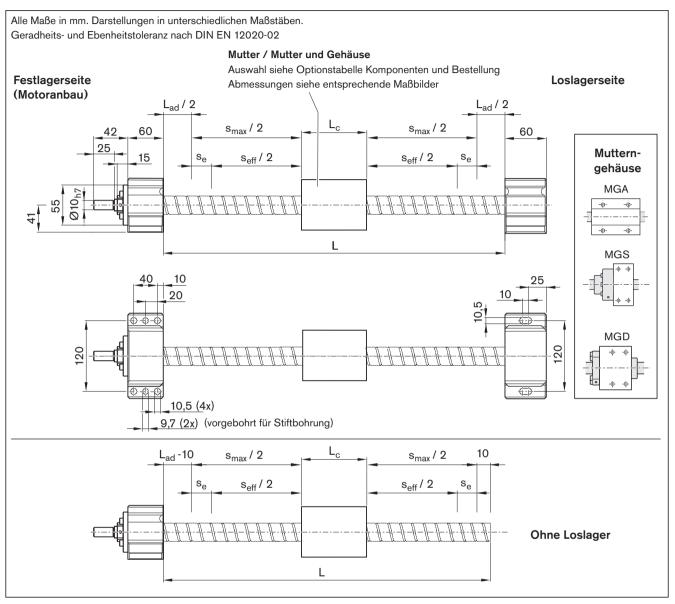
Bestellbeispiel: Siehe "Service und Informationen/Bestellbeispiel"

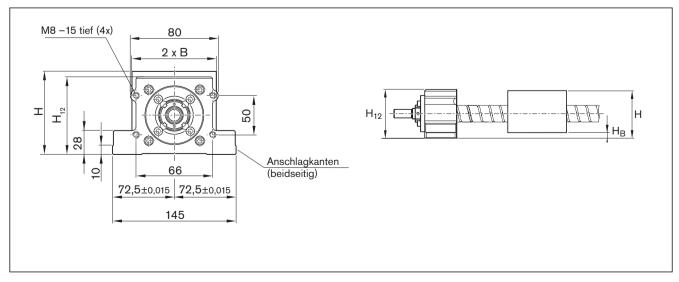
 $\begin{array}{ll} \textbf{L\"{a}ngenberechnung} & & d_0 & = Nenndurchmesser \\ P & = Steigung \end{array}$

 s_{max} = Maximaler Verfahrweg s_{eff} = Effektiver Hub

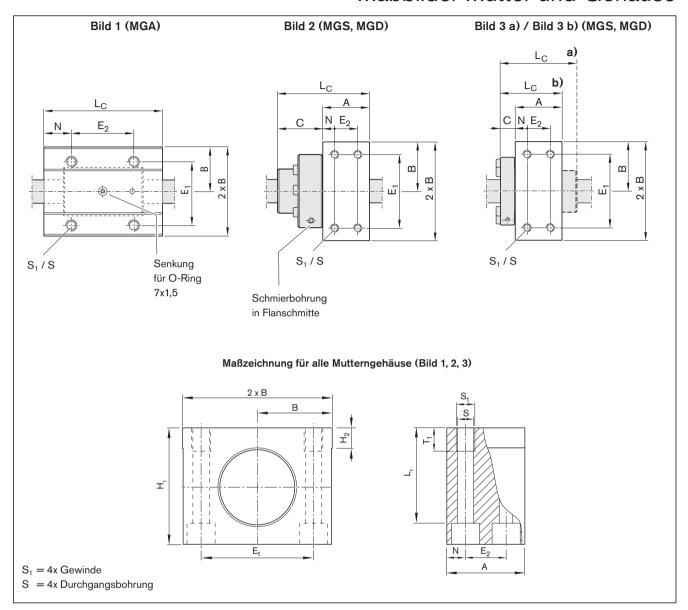
L = Länge

L_c = Länge Mutter/Länge Mutter mit Gehäuse
 L_{ad} = Längenzuschlag (siehe Kapitel "Technische Daten")


Beispiel für die Längenberechnung siehe Bestellbeispiel.

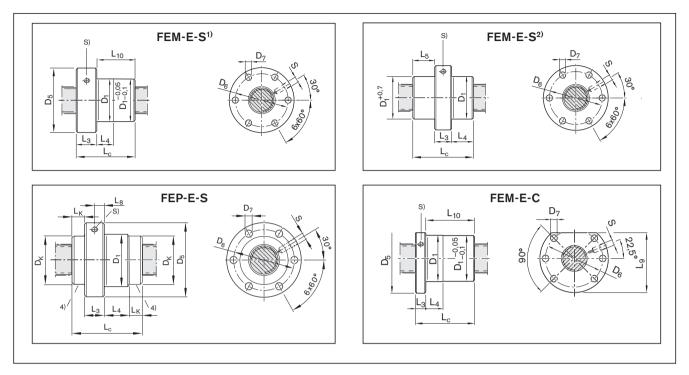

Effektiver Hub

 $s_{\text{eff}} = s_{\text{max}} - 2 \cdot s_{\text{e}}$


Antriebseinheiten AOK

AOK-020 Maßbilder

Maßbilder Mutter und Gehäuse

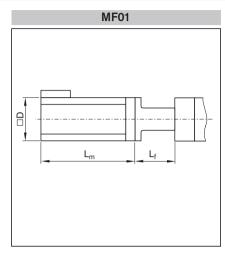

AOK-020	Mutter	Muttern-	Bild	Maße	(mm)														
$d_0 \times P$		gehäuse		Α	В	С	E,	E ₂	Н	H ₁	H ₂	H ₁₂	H_{B}	L _c	L ₁	N	S ₁	S	T ₁
					±0,01							±0,15							
20 x 5	ZEM-E	MGA	1	_	37,5	_	55	60	85				10	100		20	M10	8,6	
	FEM-E-S	MGS	3 b)	40	37,5	12	56 ^{±0,1}	20 ^{±0,1}	73	62	52	Ī	11	52	51	10	M10	8,4	
	FEM-E-C	MGD	3 b)	55	37,5	12	55 ^{±0,1}	23 ^{±0,1}	69			Ī	13	67		22	M10	8,4	
20 x 10	ZEM-E	MGA	1	-	37,5	_	55	60	85				10	100		20	M10	8,6	
	FEM-E-S	MGS	3 a)	40	37,5	12	56 ^{±0,1}	20 ^{±0,1}	73	62			11	60	51	10	M10	8,4	8,4 8,6 8,6 8,4 8,4
	FEM-E-C	MGD	3 b)	55	37,5	12	55 ^{±0,1}	23 ^{±0,1}	69		10	81	13	67		22	M10	8,4	
20 x 20	ZEM-E	MGA	1	_	37,5	-	55	60	85			Ī	10	100		20	M10	8,6	
	FEM-E-S	MGS	2	40	42,5	38	63 ^{±0,1}	20 ^{±0,1}	75	65		Ī	10	78	54	10	M10	8,4	
	FEM-E-C	MGD	3 a)	55	37,5	12	55 ^{±0,1}	23 ^{±0,1}	69				13	77		22	M10	8,4	
20 x 40	ZEM-E	MGA	1	_	37,5	-	55	60	85	0.5		Ī	10	100	- 4	20	M10	8,6	
	FEP-E-S	MGS	2	40	42,5	23	63 ^{±0,1}	20 ^{±0,1}	75	65			10	63	54	10	M10	8,4	

 $L_{ad} = L\ddot{a}$ ngenzuschlag (siehe Kapitel "Technische Daten")

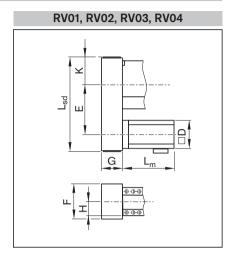
Antriebseinheiten AOK

AOK-020

Maßbilder Mutter


AOK-020	Mutter	Maße (mm)														
d ₀ x P		D ₁ (g6)	D_5	D_6	D_7	D_K	L _c	L ₃	L_4	L ₅	L ₈	L ₉	L ₁₀	L _K	S ³⁾	
20 x 5	FEM-E-S ¹⁾	33	58	45	6,6	-	40	12	10,0	_	_	_	28	-	M6	
	FEM-E-C	36	58	47	6,6	-	40	12	10,0	_	_	51	28	-	M6	
20 x 10	FEM-E-S1)	33	58	45	6,6	-	60	12	16,0	18,5	-	_	48	-	M6	
	FEM-E-C	36	58	47	6,6	-	60	12	16,0	_	-	51	48	-	M6	
20 x 20	FEM-E-S ²⁾	38	63	50	6,6	_	57	20	18,5	18,5	-	_	_	-	M6	
	FEM-E-C	36	58	47	6,6	_	77	12	25,0	_	-	51	65	_	M6	
20 x 40	FEP-E-S	38	63	50	6,6	37,5	57 ^{±0,5}	12	23,0	_	8	_	_	11	M6	

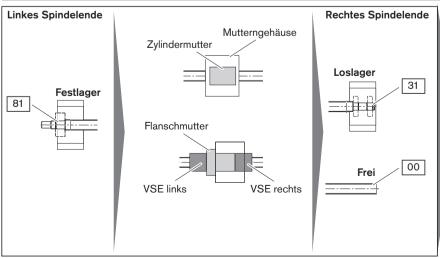
³⁾ Schmierbohrung (S) (in Flanschmitte bei FEM-E-S, FEM-E-C); Ausführung Schmieranschluss: Anflachung L3 \leq 15 mm, Senkung L3 > 15 mm;

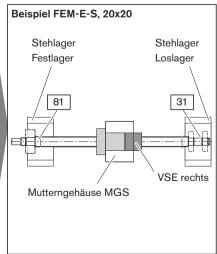

⁴⁾ Umlenkkappe aus Kunststoff

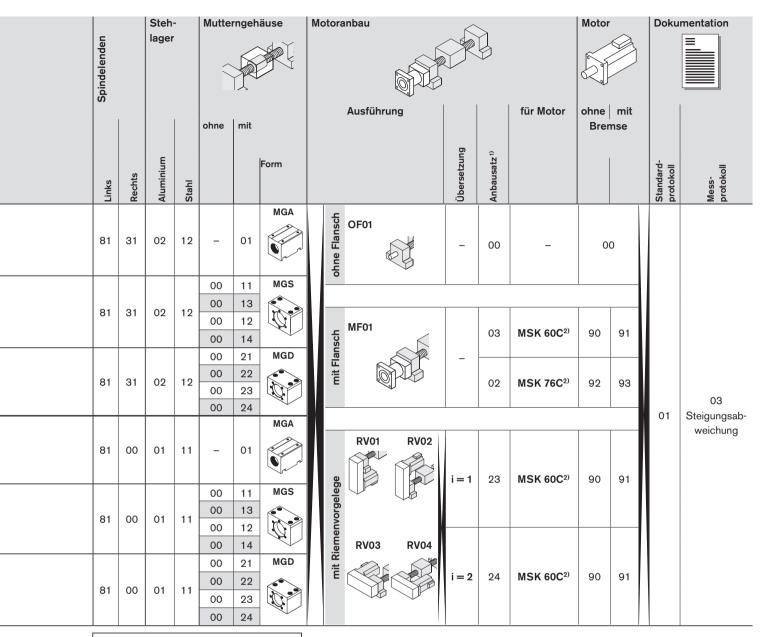
Maßbilder Motoranbau

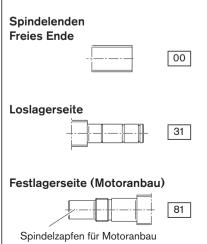
OF01

Ausführung


Ausführung	Motor	Maße (mm	1)								
		D	E	F	G	Н	K	L _f	L _m		L _{sd}
			i = 1						ohne	mit	i = 1
									Bremse	Bremse	
RV01, RV02,	MSM 041B	80	122,5	88	51	41	47,5	_	112,0	149,0	231
RV03, RV04	MSK 040C	82	122,5	88	51	41	47,5	_	185,5	215,5	231
	MSK 050C	100	155	116	66	41	56	-	203,0	233,0	287
MF01	MSM 041B	80	_	-	-	_	-	90	112,0	149,0	_
	MSK 040C	82	_	_	-	-	_	90	185,5	215,5	_
	MSK 050C	98	_	_	_	_	-	115	203,0	233,0	_


Weitere Informationen und Maße siehe Kapitel "Motoren"


AOK-032


Konfiguration und Bestellung

Kurzbezeichnung, Länge: AOK-032-NN-1, mm	Antrieb BASA														
		Grö				Tolera		Standard Dichtung	Schmie		y,		nnungsk	classe	
	Mutter	32 x 5	32 x 10	32 x 20	32 x 32				Grundbefettet	VSE-Links	VSE-Rechts	C1 (leicht)	C2 (mittel)	C3 (hoch)	
Ausführung Fest- und	ZEM-E														
Loslager		01	02	03	04	T5	T7	1	1	_	_	3	6	2	
	FEM-E-S	11	<u> </u>	-	-										
- A		-	12	-	-										
A TOP S		_	-	13	-	T5	T7	1	1	2	3	3	6	2	
	Mark &	-	-	-	14										
	FEM-E-C	21	_	_	_										
		_	22	-	-	T5	T7	1	1	2	3	3	6	2	
		<u> </u>	_	23	24										
Ausführung nur mit	ZEM-E				27										
Festlager		06	07	08	09	T5	T7	1	1	_	_	3	6	2	
	FEM-E-S	16	-	-	-										
- 50		-	17	-	-	T5	T7	1	1	2	_	3	6	2	
3		<u> </u>	_	18	_	10	' '	'	'		_	3	0		
		-	-	_	19										
	FEM-E-C	26	-	_	_										
		-	27	-	-	T5	T7	1	1	2	_	3	6	2	
		-	_	28	29										
Linkas Cnindalanda				_	29			htee Crindelen							

- 1) Anbausatz auch ohne Motor lieferbar (Bei Bestellung: für Motor "00" eintragen)
- 2) Empfohlener Motor (Motordaten und Typenbezeichnung 🗪 "Motoren")

Bestellbeispiel: Siehe "Service und Informationen/Bestellbeispiel"

Längenberechnung = Nenndurchmesser d_0 = Steigung

VSE = Vorsatzschmiereinheit $L = s_{max} + L_c + L_{ad}$

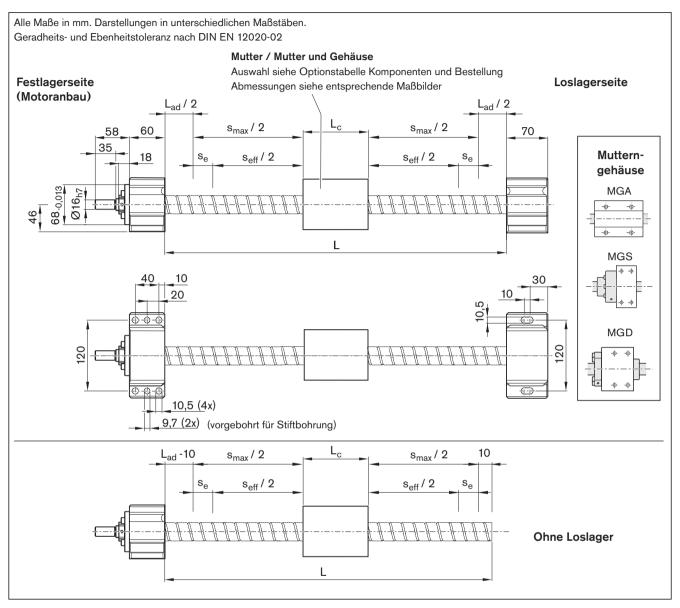
= Überlauf

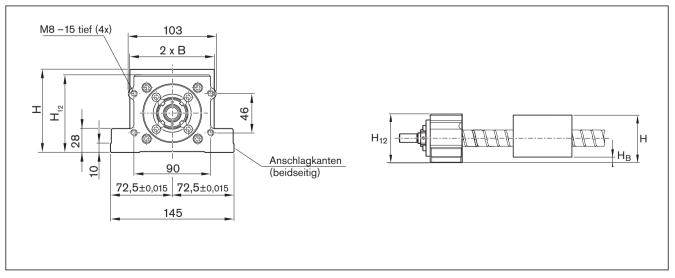
= Maximaler Verfahrweg

= Effektiver Hub

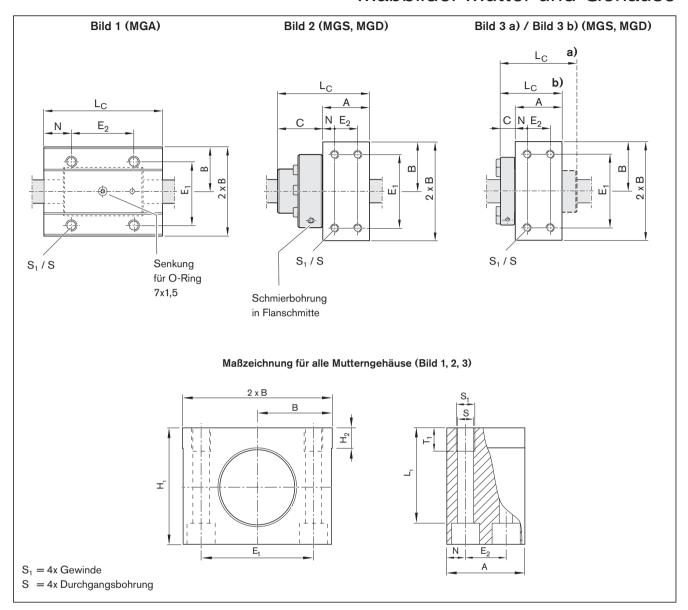
= Länge Mutter/Länge Mutter mit Gehäuse

= Längenzuschlag (siehe Kapitel "Technische Daten")


Beispiel für die Längenberechnung siehe Bestellbeispiel.

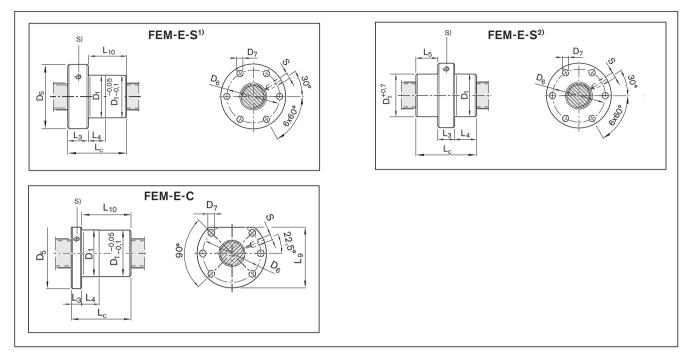

Effektiver Hub

 $s_{eff} = s_{max} - 2 \cdot s_{e}$


Antriebseinheiten AOK

AOK-032 Maßbilder

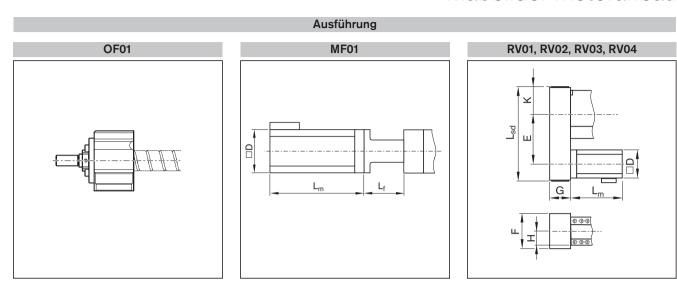
Maßbilder Mutter und Gehäuse



AOK-032	Mutter	Muttern-	Bild	Maí	3e (mn	n)													
$d_0 \times P$		gehäuse		Α	В	С	E ₁	E ₂	Н	H ₁	H ₂	H ₁₂	H_{B}	L_c	L ₁	N	S ₁	S	T ₁
					±0,01							±0,15							
32 x 5	ZEM-E	MGA	1	<u> </u>	50	_	75	100	95				15	150		25	M12	10,5	18
	FEM-E-S	MGS	3 b)	50	47,5	13	72 ^{±0,1}	26 ^{±0,1}	84				9	63	61	12	M12	10,5	15
	FEM-E-C	MGD	3 b)	70	50	13	75 ^{±0,1}	30 ^{±0,1}	81	75	10		11	83		27	M16	13,0	20
32 x 10	ZEM-E	MGA	1	-	50	_	75	100	95	75	10		15	150		25	M12	10,5	18
	FEM-E-S	MGS	3 a)	50	47,5	13	72 ^{±0,1}	26 ^{±0,1}	84				9	77	61	15	M12	10,5	15
	FEM-E-C	MGD	3 b)	70	50	13	75 ^{±0,1}	30 ^{±0,1}	81			91	11	83		27	M16	13,0	20
32 x 20	ZEM-E	MGA	1	-	50	_	75	100	95			91	15	150		25	M12	10,5	18
	FEM-E-S	MGS	3 b)	60	52,5	15	82 ^{±0,1}	30 ^{±0,1}	88				6	75	64	15	M16	13,0	20
	FEM-E-C	MGD	3 a)	70	50	13	75 ^{±0,1}	30 ^{±0,1}	81	82	10		11	84		27	M16	13,0	20
32 x 32	ZEM-E	MGA	1	-	50	_	75	100	95	82	12		15	150		25	M12	10,5	18
	FEM-E-S	MGS	2	60	52,5	54	82 ^{±0,1}	30 ^{±0,1}	88				6	114	64	15	M16	13,0	20
	FEM-E-C	MGD	3 a)	70	50	13	75 ^{±0,1}	30 ^{±0,1}	81				11	120		27	M16	13,0	20

 $L_{ad} = L\ddot{a}ngenzuschlag$ (siehe Kapitel "Technische Daten")

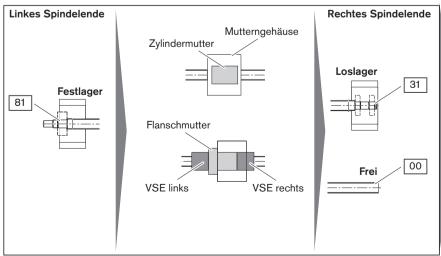
AOK-032

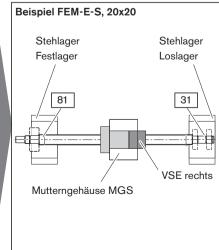

Maßbilder Mutter

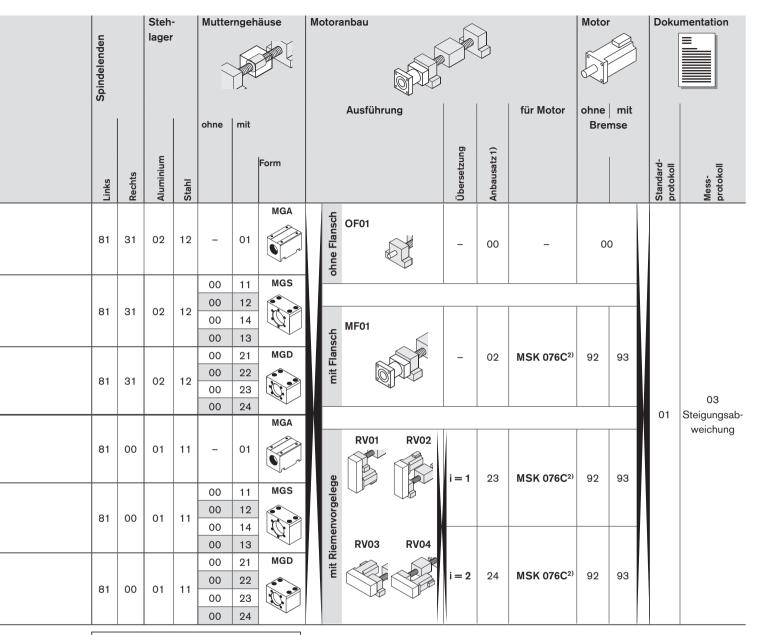
AOK-032	Mutter	(mm)										
$d_0 \times P$		D ₁ (g6)	D ₅	D ₆	D_7	L _c	L ₃	L ₄	L ₅	L ₉	L ₁₀	S ³⁾
32 x 5	FEM-E-S ¹⁾	48	73	60	6,6	48	13	10	_	_	35	M6
	FEM-E-C	50	80	65	9,0	48	13	10	-	71	35	M6
32 x 10	FEM-E-S1)	48	73	60	6,6	77	13	16	-	-	64	M6
	FEM-E-C	50	80	65	9,0	77	13	16	_	71	64	M6
32 x 20	FEM-E-S ¹⁾	56	80	60	6,6	64	15	25	_	_	49	M6
	FEM-E-C	50	80	65	9,0	84	13	25	_	71	71	M6
32 x 32	FEM-E-S ²⁾	56	80	60	6,6	88	20	34	34	_	_	M6
	FEM-E-C	50	80	65	9,0	120	13	40	_	71	107	M6

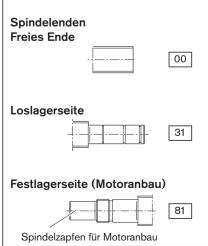
³⁾ Schmierbohrung (S) (in Flanschmitte bei FEM-E-S, FEM-E-C); Ausführung Schmieranschluss: Anflachung L3 ≤ 15 mm, Senkung L3 > 15 mm;

Maßbilder Motoranbau


Ausführung	Motor	Маве (mm)										
		D	E		F	G	Н	K	L_{f}	L _m		L_{sd}	
			i = 1	i = 2						ohne	mit	i = 1	i = 2
										Bremse	Bremse		
RV01, RV02,	MSK 060C	116	165	162	116	66	46	59	_	226,0	259,0	300	300
RV03, RV04													
MF01	MSK 060C	116	_	_	_	_	_	-	125	226,0	259,0	-	_
	MSK 076C	140	_	_	_	_	_	_	133	292,5	292,5	_	_


Weitere Informationen und Maße siehe Kapitel "Motoren"


AOK-040

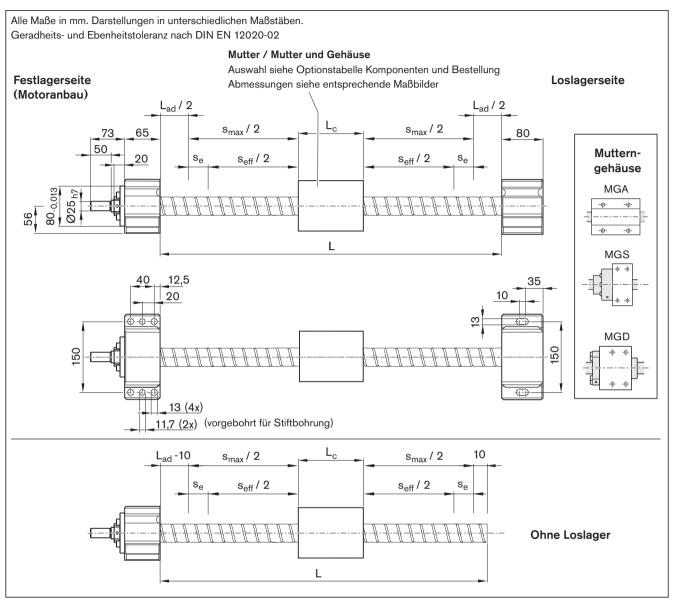

Konfiguration und Bestellung

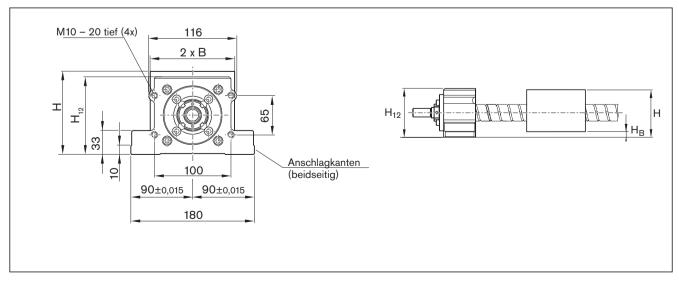
Kurzbezeichnung, Länge: AOK-040-NN-1, mm	Antrieb BASA								j						
		Grö				Toler		Dichtung	Schmie	rung		Vorspar	nungskl	asse	
		d _o x	Р						tet		S				
	Mutter	40 x 5	40 x 10	40 × 20	40 x 40			Standard	Grundbefettet	VSE-Links	VSE-Rechts	C1 (leicht)	C2 (mittel)	C3 (hoch)	
Ausführung Fest- und	ZEM-E														
Loslager		01	02	03	04	T5	T7	1	1	_	_	3	6	2	
	FEM-E-S	11	-	-	-										
A TOP IS			12			T5	T7	1	1	2	3	3	6	2	
3		<u> </u>	_	13	_	"				_				_	
	FEM-E-C	21	_	_	14										
		-	22												
				23		T5	T7	1	1	2	3	3	6	2	
	Min W				24										
Ausführung nur mit Festlager	ZEM-E														
i estiagei		06	07	80	09	T5	T7	1	1	-	_	3	6	2	
	FEM-E-S	16	-	_	-										
-36			17			T5	T7	1	1	2	_	3	6	2	
		Ŀ	_	18		10	''	'	'						
	FEM-E-C	26	_	_	19										
	I LIVI-L-C	26	27	_	_										
			21	28		T5	T7	1	1	2	_	3	6	2	
	Marcoa			1		1		I	1	1	1	1	1	1	I

- 1) Anbausatz auch ohne Motor lieferbar (Bei Bestellung: für Motor "00" eintragen)
- 2) Empfohlener Motor (Motordaten und Typenbezeichnung 🗪 "Motoren")

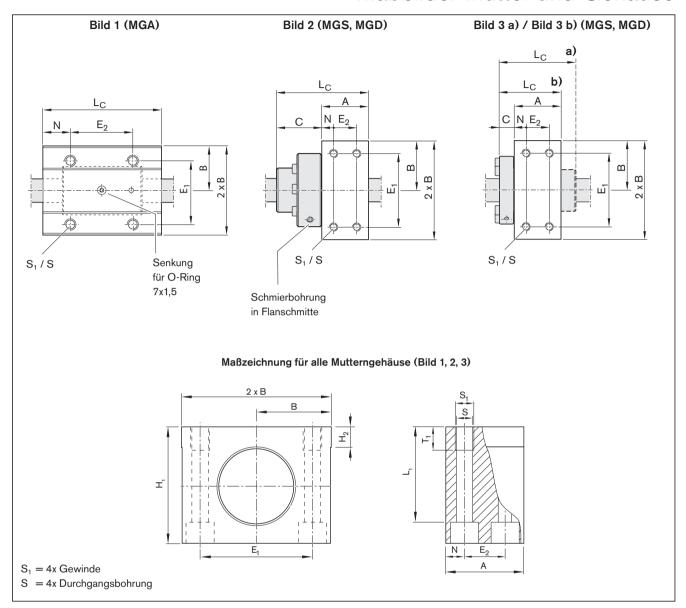
Bestellbeispiel: Siehe "Service und Informationen/Bestellbeispiel"

VSE = Vorsatzschmiereinheit $L = s_{max} + L_c + L_{ad}$ $s_c = Überlauf$


 $\begin{array}{ccc} + L_{ad} & & s_e & = \ddot{U}berlauf \\ & s_{max} & = Maximaler Verfahrweg \end{array}$

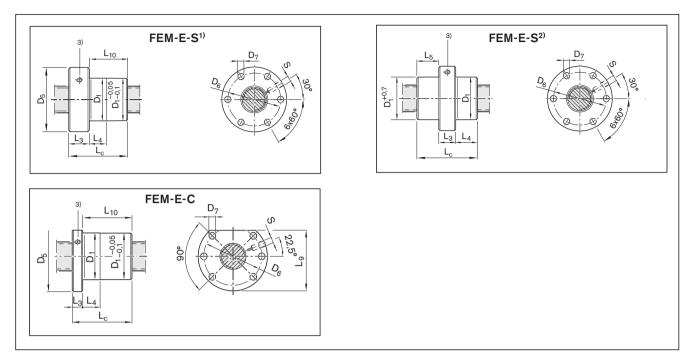

 $\begin{array}{ccc} & & s_{\rm eff} & = Effektiver \ Hub \\ \hline {\bf Effektiver \ Hub} & L & = L \ddot{\bf a} {\bf n} {\bf g} e \end{array}$

 $\begin{array}{ccc} & & L_c & = \text{Länge Mutter/Länge Mutter mit Gehäuse} \\ S_{\text{eff}} = S_{\text{max}} - 2 \cdot S_e & L_{\text{ad}} & = \text{Längenzuschlag (siehe Kapitel "Technische Daten")} \end{array}$


Beispiel für die Längenberechnung siehe Bestellbeispiel.

AOK-040 Maßbilder

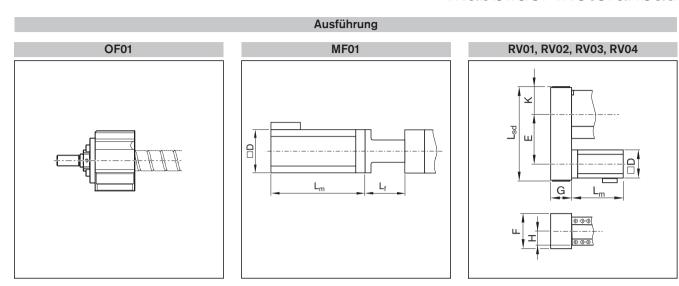
Maßbilder Mutter und Gehäuse



AOK-040	Mutter	Muttern-	Bild	Maß	e (mm)														
$d_0 \times P$		gehäuse		Α	В	С	E ₁	E ₂	Н	H₁	H_2	H ₁₂	H_{B}	L _c	L_1	N	S ₁	S	T ₁
					±0,01							±0,15							
40 x 5	ZEM-E	MGA	1	_	60	_	90	120	115				10	180		30	M16	14,5	24
	FEM-E-S	MGS	3 b)	60	52,5	13	82 ^{±0,1}	30 ^{±0,1}	98	82			16	75	64	15	M16	13,0	20
	FEM-E-C	MGD	3 b)	80	60	13	90 ^{±0,1}	35 ^{±0,1}	98				14	95		31	M18	15,0	25
40 x 10	ZEM-E	MGA	1	_	60	_	90	120	115				10	180		30	M16	14,5	24
	FEM-E-S	MGS	3 b)	65	60	13	93 ^{±0,1}	35 ^{±0,1}	106	98			8	80	79	15	M18	15,0	25
	FEM-E-C	MGD	3 b)	80	60	13	90 ^{±0,1}	35 ^{±0,1}	98		10		14	95		31	M18	15,0	25
40 x 20	ZEM-E	MGA	1	_	60	_	90	120	115		12	111	10	180		30	M16	14,5	24
	FEM-E-S	MGS	3 a)	65	60	15	93 ^{±0,1}	35 ^{±0,1}	106	98			8	88	79	15	M18	15,0	25
	FEM-E-C	MGD	3 b)	80	60	13	90 ^{±0,1}	35 ^{±0,1}	98				14	95		31	M18	15,0	25
40 x 40	ZEM-E	MGA	1	_	60	_	90	120	115				10	180		30	M16	14,5	24
	FEM-E-S	MGS	2	80	70	54	108 ^{±0,1}	46 ^{±0,1}	114	113			1	151	92	17	M20	17,0	30
	FEM-E-C	MGD	3 a)	80	60	13	90 ^{±0,1}	35 ^{±0,1}	98				14	142		31	M18	15,0	25

 $L_{ad} = L\ddot{a}$ ngenzuschlag (siehe Kapitel "Technische Daten")

AOK-040


Maßbilder Mutter

AOK-040	Mutter	(mm)										
d _o x P		D ₁ (g6)	D_5	D_6	D ₇	L _c	L ₃	L ₄	L ₅	L ₉	L ₁₀	S ³⁾
40 x 5	FEM-E-S ¹⁾	56	80	68	6,6	54	15	10	_	-	39	M8x1
	FEM-E-C	63	93	78	9,0	54	15	10		81,5	39	M8x1
40 x 10	FEM-E-S ¹⁾	63	95	78	9,0	70	15	16	_	-	55	M8x1
	FEM-E-C	63	93	78	9,0	70	15	16		81,5	55	M8x1
40 x 20	FEM-E-S1)	63	95	78	9,0	88	15	25	_	-	73	M8x1
	FEM-E-C	63	93	78	9,0	88	15	25	_	81,5	73	M8x1
40 x 40	FEM-E-S ²⁾	72	110	90	11,0	102	40	31	31	-	-	M8x1
	FEM-E-C	63	93	78	9,0	142	15	45	_	81,5	127	M8x1

³⁾ Schmierbohrung (S) (in Flanschmitte bei FEM-E-S, FEM-E-C) Ausführung Schmieranschluss: Anflachung L3 \leq 15 mm, Senkung L3 > 15 mm;

Maßbilder Motoranbau

Ausführung	Motor	Maße (m	nm)										
		D	E		F	G	Н	K	L _f	L _m		L _{sd}	
			i = 1	i = 2						ohne	mit	i = 1	i = 2
										Bremse	Bremse		
RV01, RV02,	MSK 076C	140	240	238	160	90	56	77	_	292,5	292,5	409	409
RV03, RV04													
MF01	MSK 076C	140	_	_	_	-	-	-	140	292,5	292,5	_	_

Weitere Informationen und Maße siehe Kapitel "Motoren"

Produktbeschreibung

Eigenschaften

- Antriebseinheiten AGK in geschlossener Bauform sind einbaufertige Antriebsachsen bestehend aus Kugelgewindetrieb,
 Mutterngehäuse und Stehlagern sowie einem Aluminium-Schutzprofil mit Abdeckband als Einhausung
- Drei abgestimmte Baugrößen in beliebigen Längen bis L_{max}
- Optimaler Schutz des BASA durch Schutzprofil mit Bandabdeckung in Stahl oder Polyurethan
- Antrieb über spielfrei vorgespannten Präzisions-Kugelgewindetrieb in gerollter Ausführung nach DIN 69051 in Toleranzklasse T5 oder T7
- Hohe Verfahrgeschwindigkeiten durch große Steigungen bei gleichzeitig hoher Präzision über große Längen
- Optional wählbare, mitlaufende Spindelunterstützungen für maximale Geschwindigkeiten bei großen Längen für den Einsatz in horizontaler Einbaulage

Weitere Highlights

- Flexibel durch wählbare Optionen
- Einfacher Motoranbau über Zentrierung und Gewinde
- Übersichtliche technische Daten für die komplette Einheit als "Linearachsen ohne Führung"
- Typenschild mit Parametern zur einfachen Inbetriebnahme

Anbauteile

- Motoranbauten mit Flansch und Kupplung oder über Riemenvorgelege
- Anbausätze für Motoren nach Kundenwunsch
- Wartungsfreie Servomotore mit wählbarer Bremse und integriertem Feedback
- Schalter (magnetischer Sensor), Schalterbetätigung ohne zusätzliche Schaltfahne
- Dose und Stecker

Der Tisch stützt sich symmetrisch auf zwei Schienenführungen mit vier Führungswagen ab. Das Mutterngehäuse des Kugelgewindetriebes ist nach oben orientiert.

Einbaubeispiele

Je nach konstruktiven Anforderungen kann das Mutterngehäuse auch seitlich orientiert werden.

Produktbeschreibung SPU

Patentierte Spindelunterstützung (SPU)

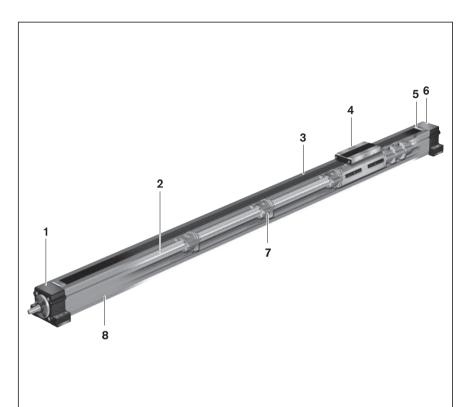
Die Spindelunterstützung SPU bietet folgende Vorteile:

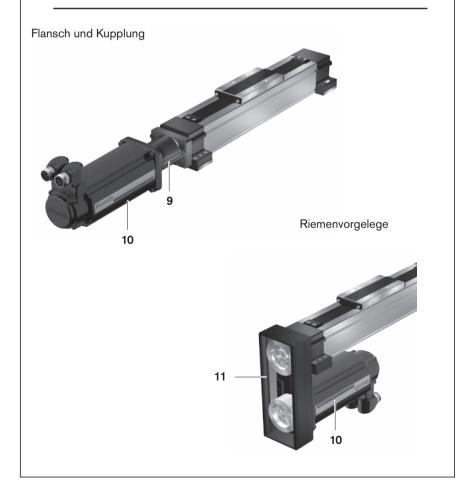
- Spindelunterstützungen als Standard-Option wählbar
- Maximale Geschwindigkeit über große Längen
- Führung der Spindelunterstützungen im Schutzprofil
- Dämpfung zwischen Tischteil und Spindelunterstützung durch Elastomerpuffer
- Die Spindelunterstützungen sind wartungsfrei
- Spindelunterstützung durch Abdeckung geschützt

⚠ Die Spindelunterstützung ist nur für Horizontalbetrieb geeignet.

Bei spindelgetriebenen Linearachsen wird bei zunehmender Länge auch der Stützabstand der Spindel immer größer. Bei der so zunehmenden, frei tragenden Länge wird der Resonanzbereich mit dem unerwünschten Aufschwingen der Spindel immer schneller erreicht und deshalb reduziert sich die Drehzahl bzw. die zulässige Geschwindigkeit entsprechend.

Die mitlaufenden Spindelunterstützungen werden an definierten Unterstützungspunkten positioniert und verkürzen so die frei tragende Länge der Spindel. Das Ergebnis sind konstant hohe Geschwindigkeiten über große Längen.



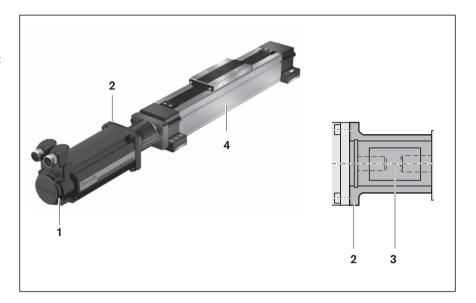

Aufbau

- 1 Stehlager (Festlager)
- 2 Kugelgewindetrieb mit spielfreier, zylindrischer Einzelmutter
- 3 Bandabdeckung aus Stahl oder Kunststoff
- 4 Mutterngehäuse
- 5 Bandhalterung
- 6 Stehlager (Loslager)
- **7** Spindelunterstützung (SPU)
- 8 Schutzprofil

Motoranbau

- 9 Flansch und Kupplung
- 10 Servomotor
- 11 Riemenvorgelege

Aufbau Flansch und Kupplung


Bei allen Antriebseinheiten kann ein Motor über Flansch und Kupplung angebaut werden.

Der Flansch dient zur Befestigung des Motors an der Antriebseinheit und als geschlossenes Gehäuse für die Kupplung.

Mit der Kupplung wird das Antriebsmoment des Motors verspannungsfrei auf den Antriebszapfen der Antriebseinheit übertragen.

Unsere Standardkupplungen kompensieren die Wärmeausdehnung des Systems.

- 1 Motor
- 2 Flansch
- 3 Kupplung
- 4 Antriebseinheit

Aufbau Riemenvorgelege

Bei allen Antriebseinheiten besteht die Möglichkeit, den Motor über ein Riemenvorgelege anzubauen.

Dadurch ist die Gesamtlänge kürzer als beim Motoranbau mit Flansch und Kupplung.

Das kompakte geschlossene Umlenkgehäuse dient als Riemenschutz und Motorträger.

Außerdem sind verschiedene Übersetzungen lieferbar (größenabhängig):

- -i = 1
- -i=2

Das Riemenvorgelege ist in vier Richtungen montierbar:

- unten, oben (RV01 und RV02)
- links, rechts (RV03 und RV04)
- 1 Umlenkgehäuse aus eloxiertem Aluminiumprofil
- 2 Antriebseinheit
- 3 Zahnriemen
- 4 Motor
- 5 Vorspannen des Zahnriemens: Vorspannkraft F_{pr} am Motor aufbringen (F_{pr} wird bei Lieferung bekannt gegeben)
- 6 Deckel
- 7 Befestigung der Riemenräder mit Spannsätzen
- 8 Abdeckblech

Technische Daten

Kapitel "Berechnung" beachten.

Allgemeine technische Daten

AGK	BASA	Dynamische	Kennwerte	Min.	Max.	Länge	nzusc	hlag		Länge	Bewegte	Masser	า-
		Dynamische	Tragzahl C	Verfahr-	Länge					Muttern-	Eigen-	konsta	nten
				weg						gehäuse	masse		
			1										
		Mutter	Festlager			be	i Anza	hl SP	U				
						ohne	1	2	3				
	d _o x P			s _{min}	L _{max}		L	ad		L _c	m _{ca}	k _{g fix}	\mathbf{k}_{gvar}
	(mm)	(N)	(N)	(mm)	(mm)		(m	m)		(mm)	(kg)	(kg)	(kg/mm)
AGK-020	20 x 5	14300	17000	100	3000	86	201	326	451	204	2,50	3,50	0,0062
	20 x 10	14100											
	20 x 20	13300											
	20 x 40	14000											
AGK-032	32 x 5	21600	26000	150	5000	86	201	326	451	204	3,50	4,70	0,0099
	32 x 10	31700											
	32 x 20	19700]										
	32 x 32	19500											
AGK-040	40 x 5	29100	29000	180	5600	86	201	326	451	264	6,60	7,70	0,0160
	40 x 10	50000											
	40 x 20	37900											
	40 x 40	37000											

Massenberechnung des Linearsystems

(ohne Motoranbau, ohne Motor)

$$m_s = k_{g fix} + k_{g var} \cdot L + m_{ca}$$

Antriebsdaten

AGK	BASA	Konstanten I	Massenträghe	eitsmoment	Reibm b ohne		ahl SPU	J 3	Max. zul. Beschleu- nigung	Max. Antriebs- moment	Max. Geschwindig- keit
	d ₀ x P			k _{J m}		M			a _{max}	M _P	V _{max}
401/ 000	(mm)	(kgmm²)		(mm²)	٥٠٠١	(N	_	0.7	(m/s ²)	(Nm)	(m/s)
AGK-020	20 x 5	16,9	0,1004	0,633	0,55	0,6	0,6	0,7	39,8		
	20 x 10	21,7	0,1004	2,533	0,55	0,6	0,7	0,7	50,0		
	20 x 20	40,7	0,1004	10,132	0,60	0,7	0,8	0,9	50,0		
	20 x 40	116,7	0,1004	40,5285	0,70	0,9	1,1	1,3	50,0	<u> </u>	e E
AGK-032	32 x 5	131,7	0,7117	0,633	0,9	0,9	1,0	1,0	17,9	E E	E E
	32 x 10	138,4	0,7117	2,533	1,0	1,1	1,1	1,2	30,7	gra	gra
	32 x 20	165,0	0,6668	10,132	1,1	1,2	1,3	1,5	50,0	Diagramme	siehe Diagramme
	32 x 32	220,3	0,6668	25,938	1,2	1,4	1,6	1,8	50,0	siehe	he
AGK-040	40 x 5	378,5	1,783	0,633	1,5	1,5	1,6	1,6	12,2	. <u>s</u>	Se.
	40 x 10	354,1	1,607	2,533	1,5	1,6	1,7	1,8	16,8		
	40 x 20	404,3	1,607	10,132	1,6	1,8	1,9	2,1	33,0		
	40 x 40	604,9	1,607	40,528	1,8	2,1	2,5	2,8	50,0		

Antriebsdaten bei Motoranbau über Riemenvorgelege

AGK	Motor	BASA	bis L ²⁾	M _{sd} 1)		J _{sd}		M_{Rsd}	m _{sd}	F	B _t	
		(mm)	(mm)	(Nm)		(10 ⁻⁶ kgn	n²)	(Nm)	(kg)	(mm)		
		d _o x P		i = 1	i = 2	i =1	i = 2				i = 1	i = 2
AGK-020	MSK 040C,	20 x 5	1600	6,00	_	240	_	0,40	1,24	88	16 AT5	_
	MSM 041B	20 x 10	2000	7,90								
		20 x 20	2700	7,94								
		20 x 40	3000	7,94								
	MSK 050C	20 x 5	1600	6,00	_	1420	_	0,45	3,20	116	25 AT5	_
		20 x 10	2000	7,90								
		20 x 20	2600	8,70								
		20 x 40	3000	8,90								
AGK-032	MSK 060C	32 x 5	2500	19,10	9,55	1400	260	0,50	3,20	116	25 AT5	32 AT5
		32 x 10	3000	19,21	12,30	1						
		32 x 20	4200	19,21	12,30							
		32 x 32	5000	19,21	12,30							
AGK-040	MSK 076C	40 x 5	3600	25,60	12,80	7780	1260	0,60	8,40	160	50	50
		40 x 10	3100	51,20	25,60						AT10	AT10
		40 x 20	3100	99,30	49,65							
		40 x 40	4400	99,30	49,65							

- 1) Werte für M_{sd} ohne Berücksichtigung des Motormoments.
- 2) Bei größeren Längen wird das zulässige Antriebsmoment vom längenvariablen Wert M_p der Antriebseinheit gemäß Diagramm bestimmt

 → Kapitel "Berechnungsgrundlagen".

Antriebsdaten bei Motoranbau über Flansch und Kupplung

AGK	Motor	Kupplung	Kupplung					
	Тур	M _{cN}	J _c	m _{fc}				
		(Nm)	(10 ⁻⁶ kgm²)	(kg)				
AGK-020	MSM 041B	14,5	63	0,85				
	MSK 040C	19,0	57	0,55				
	MSK 050C	50,0	200	2,00				
AGK-032	MSK 060C	50,0	200	1,80				
	MSK 076C	98,0	390	2,40				
AGK-040	MSK 076C	98,0	390	2,80				

 $a_{max} \; = \; Maximale \; Beschleunigung$

C = Dynamische Tragzahl

 $d_0 \quad = Nenndurchmesser$

 $k_{q fix}$ = Konstante für fixen Anteil an der Masse

k_{g var} = Konstante für längenvariablen Anteil an der Masse

 $k_{J \, fix} =$ Konstante für fixen Anteil am Massenträgheitsmoment

k_{J var} = Konstante für längenvariablen Anteil am Massenträgheitsmoment

 $k_{J\,m}$ = Konstante für massenspezifischen Anteil am Massenträgheitsmoment

L = Länge

L_{ad} = Längenzuschlag

L_c = Länge Mutterngehäuse

L_{max} = Maximale Länge

 m_{ca} = Bewegte Eigenmasse

P = Steigung

 s_{min} = minimaler Verfahrweg

SPU = Spindelunterstützung

 M_p = Antriebsmoment M_{Rs} = Reibmoment System

v_{max} = Maximale Geschwindigkeit

B₊ = Riementyp

i = Übersetzung Riemenvorgelege

 J_c = Massenträgheitsmoment der Kupplung

J_{sd} = Reduziertes Massenträgheitsmoment Riemenvorgelege am Motorzapfen

 M_{cN} = Nennmoment der Kupplung

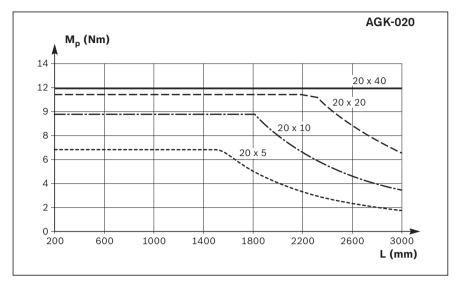
m_{fc} = Masse Flansch und Kupplung

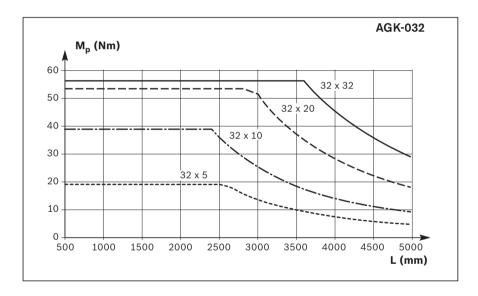
M_{Rsd} = Reibmoment Riemenvorgelege am Motorzapfen

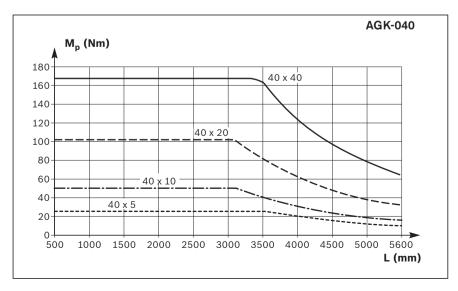
 ${
m M}_{
m sd}~={
m Maximal}$ zulässiges Antriebsdrehmoment Riemen-

vorgelege

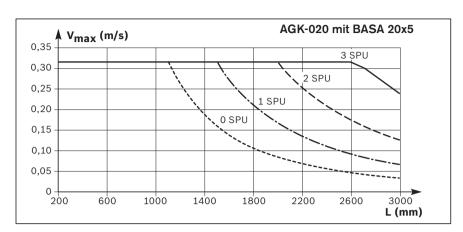
 m_{sd} = Masse Riemenvorgelege

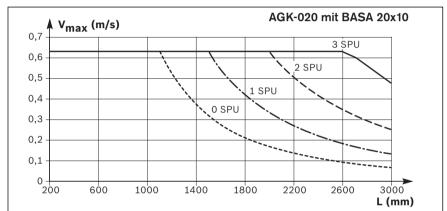

Technische Daten

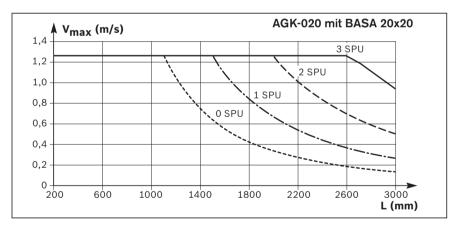

Zulässiges Antriebsmoment Mp

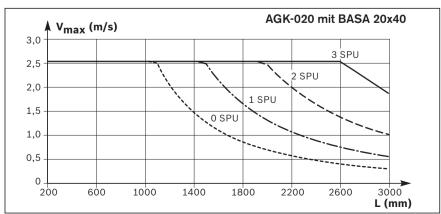

Die dargestellten Werte von M_p gelten unter folgenden Voraussetzungen:

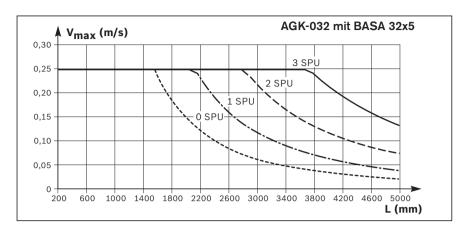
keine Radialbelastung am Spindelzapfen

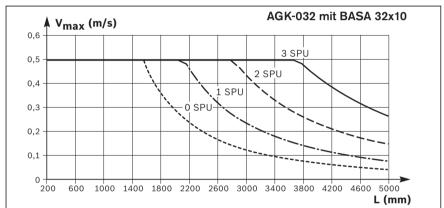


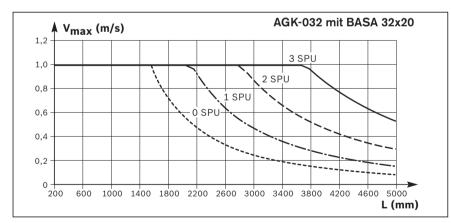


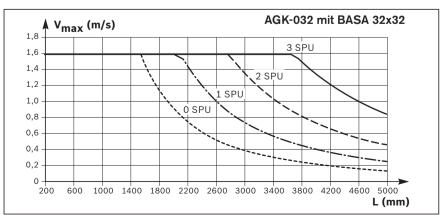

Zulässige Geschwindigkeit v_{max}

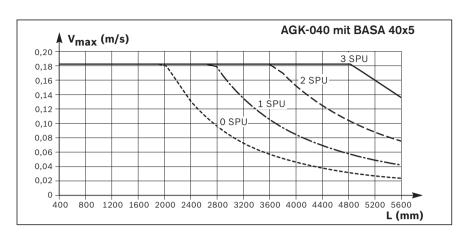

SPU = Spindelunterstützung

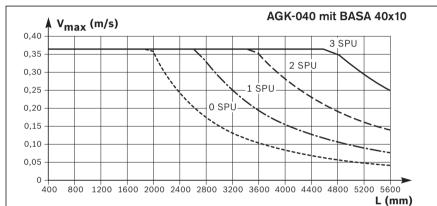


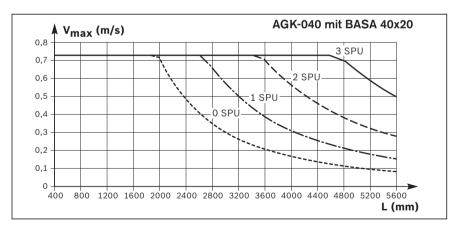

Technische Daten

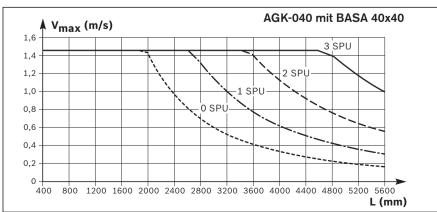

Zulässige Geschwindigkeit v_{max}

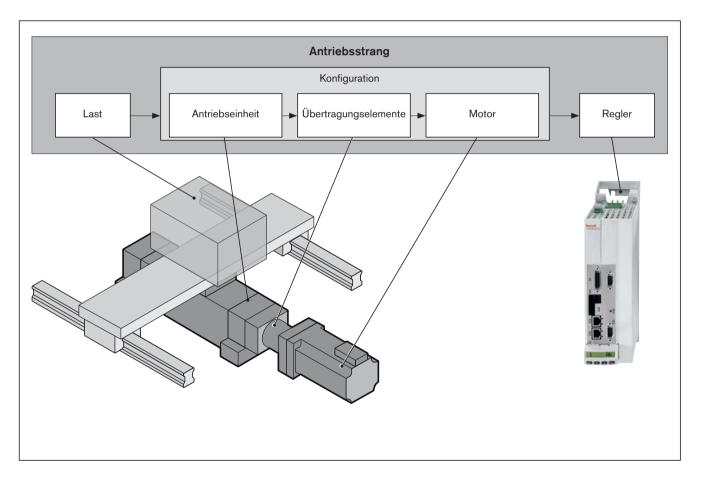

SPU = Spindelunterstützung




Bosch Rexroth AG, R999001325 (2017-05)


Zulässige Geschwindigkeit v_{max}


SPU = Spindelunterstützung



•

Berechnung

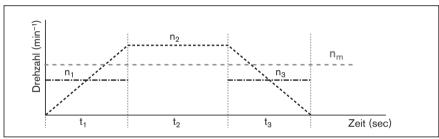
Berechnungsgrundlagen	Seite Seite 60			
Lebensdauer der Antriebseinheit	Seite 2161			
Lebensdauer des Kugelgewindetriebs bzw. des Festlagers	Seite 61			
Antriebsauslegung	Seite 63			
Grundlagen	Seite 63			
Antriebsauslegung am Referenzpunkt Motorwelle	Seite 64			
Grobe Vorauswahl des Motors	Seite 64			
Berechnungsbeispiel	Seite 68			

Berechnungsgrundlagen

Die korrekte Dimensionierung und Beurteilung einer Anwendung erfordert die strukturierte Betrachtung des gesamten Antriebsstrangs.

Das Grundelement des Antriebsstrangs bildet die Konfiguration, die die Antriebseinheit, das Übertragungselement (Kupplung oder Riemenvorgelege) und den Motor umfasst und in dieser Konstellation gemäß Katalog bestellt werden kann.

Lebensdauer der Antriebseinheit


Für die in einer Antriebseinheit enthaltenen Wälzlagerstellen kann die Lebensdauer anhand nachfolgender Formeln ermittelt werden. Die lebensdauerrelevanten Wälzlagerstellen in einer Antriebseinheit mit Kugelgewindetrieb sind der Kugelgewindetrieb (Mutter) und das Festlager.

Die rechnerische Lebensdauerangabe für die Antriebseinheit wird durch den kleinsten der separat ermittelten Lebensdauerwerte für Kugelgewindetrieb oder Festlager bestimmt.

Lebensdauer des Kugelgewindetriebs bzw. des Festlagers

Bei veränderlichen Betriebsbedingungen (Drehzahl und Belastung veränderlich) müssen bei der Berechnung der Lebensdauer die mittleren Werte \mathbf{F}_{m} und \mathbf{n}_{m} verwendet werden.

Bei veränderlicher Drehzahl gilt für die mittlere Drehzahl $\mathbf{n}_{\mathbf{m}}$:

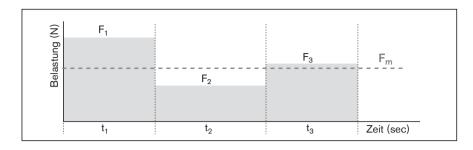
$$n_{m} = \frac{|n_{1}| \cdot t_{1} + |n_{2}| \cdot t_{2} + ... + |n_{n}| \cdot t_{n}}{t_{ges}}$$

$$t_{ges} = t_1 + t_2 + ... + t_n$$

 $\begin{array}{cccc} & \text{in den Phasen 1 ... n} & \text{(min^{-1})} \\ n_m & = & \text{Mittlere Drehzahl} & \text{(min^{-1})} \\ t_1, t_{2, ...} t_n & = & \text{Zeitanteil der Phasen 1 ... n} & \text{(sec)} \\ t_{\text{nes}} & = & \text{Summe Zeitanteile} & \text{(sec)} \end{array}$

 $n_{1, n_{2, \dots}} n_{n} = Drehzahlen$

Drehzahl in Beschleunigungs- und Bremsphasen $\mathbf{n}_{1...n}$:


$$n_{1 \dots n} = \frac{n_{A1 \dots n} + n_{E1 \dots n}}{2}$$

n₁ = Drehzahl in Beschleunigungs- und Bremsphasen

 $n_{A1 \dots n} = Anfangsdrehzahl in Phase 1 \dots n (min^{-1})$ $n_{E1 \dots n} = Enddrehzahl in Phase 1 \dots n (min^{-1})$

Berechnung

Bei veränderlicher Belastung und veränderlicher Drehzahl gilt für die mittlere Belastung $\mathbf{F}_{\mathbf{m}}$:

$$F_{m} = \sqrt[3]{\left|F_{1}\right|^{3} \cdot \frac{|n_{1}|}{n_{m}} \cdot \frac{t_{1}}{t_{ges}}} + \left|F_{2}\right|^{3} \cdot \frac{|n_{2}|}{n_{m}} \cdot \frac{t_{2}}{t_{ges}} + ... + \left|F_{n}\right|^{3} \cdot \frac{|n_{n}|}{n_{m}} \cdot \frac{t_{n}}{t_{ges}}$$

Nominelle Lebensdauer

Nominelle Lebensdauer in Umdrehungen:

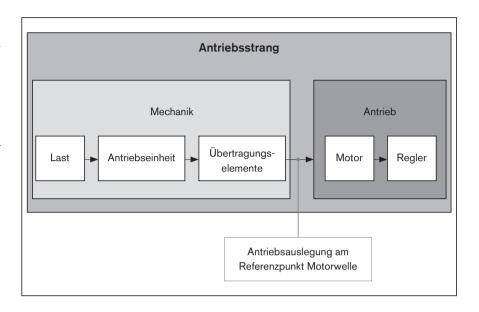
Nominelle Lebensdauer in Stunden:

$$L = \left(\frac{C}{F_m}\right)^3 \cdot 10^6$$

$$L_h = \frac{L}{n_m \cdot 60}$$

Dynamische Tragzahl (N) Axialbelastung während der Phasen 1 ... n (N) Dynamisch äquivalente Axialbelastung (N) n_{1,} n_{2, ...} n_n Drehzahlen in den Phasen 1 ... n (min^{-1}) Mittlere Drehzahl (min^{-1}) Zeitanteil der Phasen 1 ... n (sec) Summe Zeitanteile (sec) Nominelle Lebensdauer (-)Nominelle Lebensdauer (h)

Antriebsauslegung


Grundlagen

Für die Antriebsauslegung lässt sich der Antriebsstrang in die Bereiche Mechanik und Antrieb unterteilen.

Der Bereich **Mechanik** umfasst die Komponenten Antriebseinheit und Übertragungselemente (Riemenvorgelege, Kupplung) sowie die Berücksichtigung der Last.

Als elektrischer **Antrieb** wird eine Motor-Regler-Kombination mit den entsprechenden Leistungswerten bezeichnet. Die Auslegung bzw. Dimensionierung des elektrischen Antriebs erfolgt am Referenzpunkt Motorwelle.

Für eine Antriebsauslegung müssen sowohl Grenzwerte als auch Basiswerte berücksichtigt werden. Die Grenzwerte sind einzuhalten, um die mechanischen Komponenten vor Beschädigungen zu schützen.

Technische Daten und Formelzeichen der Mechanik

Für jede Komponente (Antriebseinheit, Kupplung, Riemenvorgelege) sind die entsprechenden maximal zulässigen Grenzwerte für Antriebsmoment und Geschwindigkeit sowie die Basiswerte Reibmoment und Massenträgheitsmoment zu verwenden. Folgende technische Daten mit den zugehörigen Formelzeichen werden für den Bereich **Mechanik** in den Grundlagenbetrachtungen der Antriebsauslegung verwendet. Die in der nachfolgenden Tabelle aufgelisteten Daten befinden sich im Kapitel "Technische Daten" oder sie werden mit Formeln gemäß den Beschreibungen auf den nachfolgenden Seiten ermittelt.

		Mechanik									
		Last	Antriebseinheit	selemente							
				Kupplung	Riemenvorgelege						
Gewichtsmoment	(Nm)	$M_g^{6)}$	_	_	_						
Reibmoment	(Nm)	_ 5)	M _{Rs} ³⁾	-	M _{Rsd} ³⁾						
Massenträgheitsmoment	(kgm²)	J _t ¹⁾	J _s ²⁾	J _c 3)	J _{sd} ³⁾						
max. zulässige Geschwindigkeit	(m/s)	_	V _{max} ⁴⁾	_	_						
max. zulässiges Antriebsmoment	(Nm)	_	M _p ⁴⁾	M _{cN} ³⁾	M _{sd} ³⁾						

- 1) Wert gemäß Formel ermitteln
- 2) Längenabhängiger Wert, Ermittlung gemäß Formel
- 3) Wert aus Tabelle entnehmen
- 4) Längenabhängiger Wert, Ablesen aus Diagramm
- 5) Zusätzlich auftretende Prozesskräfte sind als Lastmoment zu berücksichtigen
- 6) Bei vertikaler Einbaulage: Wert gemäß Formel ermitteln

Antriebsauslegung

Antriebsauslegung am Referenzpunkt Motorwelle

Für die Antriebsauslegung müssen alle relevanten Rechenwerte der im Antriebsstrang enthaltenen mechanischen Komponenten zusammengefasst bzw. reduziert auf die Motorwelle ermittelt werden. Für eine Kombination mechanischer Komponenten innerhalb des Antriebsstrangs ergibt sich somit jeweils ein Wert für:

- Reibmoment M_R
- Massenträgheitsmoment J_{ex}
- max. zulässige Geschwindigkeit v_{mech} (max. zulässige Drehzahl n_{mech})
- max. zulässiges Antriebsmoment M_{mech}

Ermittlung der Werte für die einzelnen im Antriebsstrang enthaltenen Mechanik-Komponenten bezogen auf den Referenzpunkt Motorwelle

Reibmoment M_R

Bei Motoranbau über Flansch und Kupplung $M_R = M_{Rs}$

Bei Motoranbau über Riemenvorgelege

 $M_R = M_{Rsd} + \frac{M_{Rs}}{i}$

Massenträgheitsmoment Jex

Bei Motoranbau über Flansch und Kupplung

 $J_{ex} = J_{s} + J_{t} + J_{c}$

Bei Motoranbau über Riemenvorgelege $J_{ex} = J_{sd} + \frac{(J_s + J_t)}{i^2}$

Ermittlung des Massenträgheitsmoments der Antriebseinheit

 $J_s = (k_{J fix} + k_{J var} \cdot L) \cdot 10^{-6}$

Ermittlung des translatorischen Massenträgheitsmoments der Fremdmasse

 $J_t = m_{ex} \cdot k_{Jm} \cdot 10^{-6}$

= Übersetzung des Riemenvorgeleges (-)(kgm²) = Massenträgheitsmoment der Kupplung J_c = Massenträgheitsmoment der Mechanik (kgm²) (kgm²) Massenträgheitsmoment der Antriebseinheit = Massenträgheitsmoment des Riemenvorgeleges am Motorzapfen (kgm²) = Translatorisches Fremdmassenträgheitsmoment bezogen auf den Antriebseinheits-Spindelzapfen (kgm²) k_{1 fix} = Konstante für fixen Anteil am Massenträgheitsmoment (kgmm²) k_{1 m} = Konstante für massenspezifischen Anteil am Massenträgheitsmoment (mm²)k_{I var} = Konstante für längenvariablen Anteil am Massenträgheitsmoment (kgmm) = Länge der Antriebseinheit (mm) m_{ex} = Bewegte Fremdmasse (kg) M_R = Reibmoment am Motorzapfen (Nm) M_{Rs} = Reibmoment System (Nm) M_{Rsd} = Reibmoment Riemenvorgelege am Motorzapfen (Nm)

Maximal zulässige Geschwindigkeit v_{mech}

Der jeweils kleinste Wert der zulässigen Geschwindigkeit aller im Antriebsstrang enthaltenen mechanischen Komponenten bestimmt die maximal zulässige Geschwindigkeit der Mechanik, die als Antriebsgrenze bei der Motorauslegung zu berücksichtigen ist. Die maximal zulässige Geschwindigkeit bzw. Drehzahl der Antriebseinheit mit Kugelgewindetrieb liegt systembedingt immer unter den Grenzwerten für die Komponenten Kupplung oder Riemenvorgelege und bestimmt somit die Grenze für die maximal zulässige Geschwindigkeit der Mechanik.

Maximal zulässige Geschwindigkeit

$$v_{mech} = v_{max}$$

Maximal zulässige Drehzahl

Bei Motoranbau über Flansch und Kupplung

$$n_{mech} = \frac{v_{mech} \cdot 1000 \cdot 60}{P}$$

Bei Motoranbau über Riemenvorgelege

$$n_{mech} = \frac{v_{mech} \cdot i \cdot 1000 \cdot 60}{P}$$

Maximal zulässiges Antriebsmoment M_{mech}

Der jeweils kleinste Wert (Minimum) des zulässigen Antriebsmoments aller im Antriebsstrang enthaltenen mechanischen Komponenten bestimmt das maximal zulässige Antriebsmoment der Mechanik, das als Antriebsgrenze bei der Motorauslegung zu berücksichtigen ist.

Bei Motoranbau über Flansch und Kupplung

$$M_{mech} = Minimum (M_{cN}; M_p)$$

Bei Motoranbau über Riemenvorgelege

$$M_{mech} = Minimum (M_{sd}; \frac{M_p}{i})$$

$$M_{cN}$$
 = Nennmoment der Kupplung (Nm)

$$M_{
m sd} = M$$
aximal zulässiges Antriebsmoment des Riemenvorgeleges (Nm)

⚠ Bei Betrachtung des kompletten Antriebsstrangs (Mechanik + Motor/Regler) kann das Maximaldrehmoment des Motors auch unterhalb der Grenze der Mechanik (M_{mech}) liegen und somit die Grenze für das maximal zulässige Antriebsmoment des Antriebsstrang bilden.

Liegt das Maximaldrehmoment des Motors über der Grenze der Mechanik (M_{mech}), dann muss das maximale Motordrehmoment auf den zulässigen Wert der Mechanik begrenzt werden!

Antriebsauslegung

Vorauswahl des Motors

Eine überschlägige Vorauswahl des Motors kann anhand folgender Bedingungen vorgenommen werden.

Bedingung 1:

Die Drehzahl des Motors muss größer oder gleich der erforderlichen Drehzahl der Mechanik sein (bis zum maximal zulässigen Grenzwert).

$$n_{max} \ge n_{mech}$$

$$n_{max}$$
 = Maximaldrehzahl des Motors (min⁻¹)

Bedingung 2:

Betrachtung des Verhältnisses der Massenträgheitsmomente von Mechanik und Motor. Das Verhältnis der Trägheitsmomente dient als Indikator für die Regelungsgüte einer Motor-Regler-Kombination. Das Massenträgheitsmoment des Motors steht in direktem Bezug zur Motorgröße.

Verhältnis der Massenträgheitsmomente

$$V = \frac{J_{ex}}{J_{m} + J_{br}}$$

Für die Vorauswahl können folgende Erfahrungswerte für eine hohe Regelungsgüte herangezogen werden. Hierbei handelt es sich nicht um starre Grenzen, jedoch erfordern Werte über diesen Grenzen eine genauere Betrachtung der Anwendung.

Anwendungsbereich	V
Handling	≤ 6,0
Bearbeitung	≤ 1,5

J_{br} = Massenträgheitsmoment der Motorbremse (kgm²)

J_{ex} = Massenträgheitsmoment der Mechanik (kgm²)

J_m = Massenträgheitsmoment des Motors (kgm²)

V = Verhältnis der Massenträgheitsmomente von Antriebsstrang und Motor (-)

Bedingung 3:

Abschätzung des Drehmomentenverhältnisses vom statischen Lastmoment zum Stillstandsdrehmoment des Motors. Das Drehmomentverhältnis muss kleiner oder gleich dem empirischen Wert 0,6 sein. Durch diese Bedingung werden die noch fehlenden Dynamikwerte eines exakten Bewegungsprofils mit den erforderlichen Motormomenten überschlägig berücksichtigt.

Drehmomentverhältnis

$$\frac{M_{stat}}{M_0} \le 0.6$$

Statisches Lastmoment

$$M_{stat} = M_R + M_g$$

Gewichtsmoment

Nur bei vertikaler Einbaulage!

Bei Motoranbau über Flansch und
Kupplung: i = 1

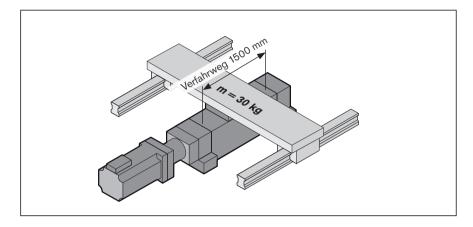
$$M_g = \frac{P \cdot (m_{ex} + m_{ca}) \cdot g}{2000 \cdot \pi \cdot i}$$

g	=	Erdbeschleunigung (= 9,81)	(m/s ²)
i	=	Übersetzung des Riemenvorgeleges	(—)
m _{ca}	=	Bewegte Eigenmasse des Tischteils	(kg)
m _{ex}	=	Bewegte Fremdmasse	(kg)
M _a	=	Gewichtsmoment am Motorzapfen	(Nm)
M_0	=	Stillstandsdrehmoment des Motors	(Nm)
M_R	=	Reibmoment am Motorzapfen	(Nm)
M_{stat}	=	Statisches Lastmoment	(Nm)
Р	=	Spindelsteigung	(mm)
π	=	Kreiszahl	(—)

Im Kapitel , Konfiguration und Bestellung" können für die verschiedenen Antriebseinheit-Baugrößen standardmäßig Konfigurationen inklusive Motoranbau und Motor durch Auswählen von Optionen erstellt werden. Durch Erfüllung der oben genannten Bedingungen kann überprüft werden, ob ein in der Konfiguration ausgewählter Standardmotor von der Baugröße her grundsätzlich für die Applikation geeignet ist.

Exakte Antriebsauslegung

Die grobe Vorauswahl des Motors ersetzt nicht die erforderliche genaue Antriebsberechnung mit detaillierter Momenten- und Drehzahlbetrachtung. Für eine exakte Berechnung des elektrischen Antriebs mit Berücksichtigung des zugrunde liegenden Bewegungsprofils sind die Leistungsdaten aus den Katalogen "IndraDrive Cs" und "IndraDrive C" heranzuziehen. Bei der Antriebsauslegung müssen die maximal zulässigen Grenzwerte für die Geschwindigkeit, das Antriebsmoment und die Beschleunigung eingehalten werden, um die Mechanik vor Beschädigungen zu schützen.


Berechnungsbeispiel

Ausgangsdaten

Bei einer Handhabungsaufgabe in horizontaler Einbaulage soll eine Masse von 30 kg mit einer maximalen Geschwindigkeit von 0,3 m/s um 1500 mm bewegt werden. Die Masse wird über eine separate Linearführung verfahren, deren Reibkraft 100 N beträgt. Gewählt wurde aufgrund der technischen Daten und der Bauraumbedingungen:

Antriebseinheit AGK-020:

- Motoranbau über Flansch und Kupplung
- mit Motor MSK 040C ohne Bremse

Abschätzung der Länge L

(Für eine erste Abschätzung wird mit der größtmöglichen Steigung und somit Länge kalkuliert, da die zulässige Geschwindigkeit bei zunehmender Länge abnehmen kann.)

$$L = s_{max} + L_c + L_{ad}$$

Überlauf: $s_e = 2 \cdot P = 2 \cdot 40 = 80 \text{ mm}$

Verfahrweg max.: $s_{max} = s_{eff} + 2 \cdot s_{e}$

 $= 1500 + 2 \cdot 80 = 1660 \text{ mm}$

Länge: L = 1660 + 204 + 86 = 1950 mm

Auswahl des Kugelgewindetriebes

(Vorzugsweise die kleinste Steigung wählen, da vorteilhaft bzgl. Auflösung Bremsweg, Länge).

Zulässige Kugelgewindetriebe nach Diagramm "Zulässige Geschwindigkeit" bei v = 0.3 m/s und L = 1950 mm:

BASA 20 x 40 und BASA 20 x 20

Gewählter Kugelgewindetrieb (kleinere Steigung):

BASA 20 x 20

maximal zulässige Geschwindigkeit für BASA 20 x 20 aus Diagramm:

 $v_{max} = 0.4 \text{ m/s}$

Berechnung der Länge L

(für gewählten BASA)

Überlauf:
$$s_e = 2 \cdot P = 2 \cdot 20 = 40 \text{ mm}$$

Verfahrweg max.: $s_{max} = s_{eff} + 2 \cdot s_{e}$

 $= 1500 + 2 \cdot 40 = 1580 \text{ mm}$

Länge: L = 1580 + 204 + 86 = 1870 mm

Reibmoment M_R

(Motoranbau über Flansch und Kupplung)

$$M_R = M_{Rs} + M_{Rad}$$

Separate Führung: $M_{Rad} = (P \cdot F_R)/(2000 \cdot \pi)$

 $= (20 \cdot 100)/(2000 \cdot \pi)$

= 0.32 Nm

Antriebseinheit: $M_{Rs} = 0,60 \text{ Nm}$

Reibmoment: $M_R = 0,60 + 0,32 = 0,92 \text{ Nm}$

Massenträgheitsmoment Jex

(Motoranbau über Flansch und Kupplung)

$$J_{ex} = J_s + J_t + J_c$$

Kupplung: $J_c = 57 \cdot 10^{-6} \text{ kgm}^2$

Antriebseinheit: $J_s = (k_{J \text{ fix}} + k_{J \text{ var}} \cdot L) \cdot 10^{-6}$

$$= (40.7 + 0.1004 \cdot 1870) \cdot 10^{-6}$$

$$= 228,45 \cdot 10^{-6} \text{ kgm}^2$$

Fremdmasse: $J_t = m_{ex} \cdot k_{Jm} \cdot 10^{-6}$

$$= 30 \cdot 10{,}1321 \cdot 10^{-6}$$

$$= 303,96 \cdot 10^{-6} \,\mathrm{kgm^2}$$

Trägheitsmoment: $J_{ex} = 228,45 \cdot 10^{-6} + 303,96 \cdot 10^{-6} + 57 \cdot 10^{-6}$

$$= 589,41 \cdot 10^{-6} \text{ kgm}^2$$

Maximal zulässige Drehzahl

n_{mech}

(Motoranbau über Flansch und Kupplung)

Grenzwert Mechanik

$$n_{\text{mech}} = \frac{(v_{\text{mech}} \cdot 1000 \cdot 60)}{p}$$

Max. zul. Geschwindigkeit: $v_{mech} = v_{max} = 0.4 \text{ m/s}$

Max. zul. Drehzahl:
$$n_{mech} = \frac{(0,4 \cdot 1000 \cdot 60)}{20}$$

= 1200 min⁻¹

Maximale Drehzahl der Anwendung n_{mech}

(Motoranbau über Flansch und Kupplung)

Grenzwert Anwendung

Geschwindigkeit:
$$v_{mech} = 0.3 \text{ m/s}$$

Drehzahl:
$$n_{mech} = \frac{0.3 \cdot 1000 \cdot 60}{20}$$

Berechnungsbeispiel

Maximal zulässiges Antriebsmoment M_{mech}

(Motoranbau über Flansch und Kupp-

Grenzwert Mechanik

 $M_{mech} = Minimum (M_{cN}; M_p)$

 $M_{cN} = 19 \text{ Nm (für MSK 040C)}$ Kupplung:

 $M_n = 11,5 \text{ Nm}$ Antriebseinheit:

 $M_{mech} = Minimum (19; 11,5)$ Antriebsmoment:

= 11.5 Nm

Überprüfung der Motorvorauswahl

gewählter Motor: MSK 040C ohne Bremse

Bedingung 1:

Drehzahl: $n_{max} \ge n_{mech}$

6000 ≥ 900 Bedingung erfüllt – Motorauswahl in Ordnung

Bedingung 2:

Trägheitsmomentenverhältnis: $V=\frac{J_{ex}}{J_m+J_{br}}$ Motorträgheit: $J_m=140\cdot 10^{-6}~kgm^2$

 $J_{br} = 0 \cdot 10^{-6} \text{ kgm}^2 \text{ (ohne Bremse)}$ Bremsenträgheit:

 $V = \frac{589,41 \cdot 10^{-6}}{(140 \cdot 10^{-6} + 0 \cdot 10^{-6})}$ Trägheitsverhältnis:

= 4,21

V ≤ 6 Bedingung Handling:

4,21 ≤ 6 Bedingung erfüllt – Motorauswahl in Ordnung

Bedingung 3:

 $\frac{M_{stat}}{M_0} \leq 0.6$ Drehmomentenverhältnis:

 $M_{stat} = M_R + M_g$ (Horizontale Einbaulage $M_g = 0$) Statisches Lastmoment:

= 0,92 Nm

Stillstandsdrehmoment

 $M_0 = 2.7 \text{ Nm}$ des Motors:

 $\frac{0.92}{2.7} = 0.34$ Drehmomentenverhältnis:

0,34 ≤ 0,6 Bedingung erfüllt - Motorauswahl in Ordnung

Alle drei Bedingung erfüllt

gewählter Motor für die Applikation geeignet.

Ergebnis

Antriebseinheit AGK-020

 $\begin{array}{lll} \text{Länge:} & \text{L} & = & 1870 \text{ mm,} \\ \text{Verfahrweg max.:} & \text{s}_{\text{max}} & = & 1580 \text{ mm} \\ \text{Tischteillänge:} & \text{L}_{\text{c}} & = & 204 \text{ mm} \end{array}$

Kugelgewindetrieb: Nenndurchmesser: $d_0 = 20 \text{ mm}$

Steigung: P = 20 mm

Motoranbau über Flansch und Kupplung Vorauswahl Motor: MSK 040C ohne Bremse

Für die exakte Auslegung des elektrischen Antriebs ist stets die Kombination Motor-Regelgerät zu betrachten, da die Leistungsdaten (z.B. maximale Nutzdrehzahl und maximales Drehmoment) vom verwendeten Regelgerät abhängig sind.

Hierbei sind folgende Daten zu berücksichtigen:

Reibmoment: $M_R = 0.92 \text{ Nm}$

Massenträgheitsmoment: $J_{ex} = 589,41 \cdot 10^{-6} \text{ kgm}^2$

Geschwindigkeit: $v_{mech} = 0.3 \text{ m/s (} n_{mech} = 900 \text{ min}^{-1} \text{)}$

Grenzwert für Antriebsmoment: $M_{mech} = 11,5 \text{ Nm}$

■ Das Motormoment muss antriebseitig auf 11,5 Nm begrenzt werden!

Grenzwert für Beschleunigung: $a_{max} = 50 \text{ m/s}^2$

Grenzwert für Geschwindigkeit: $v_{max} = 0.4 \text{ m/s} (n_{mech} = 1200 \text{ min}^{-1})$

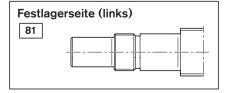
Neben dem Vorzugstyp MSK 040C können auch andere Motoren mit identischen Anbauabmessungen adaptiert werden, wobei die Grenzwerte nicht überschritten werden dürfen.

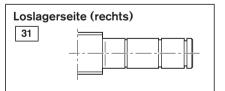
Antriebseinheiten AGK

AGK-020

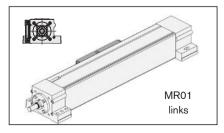
Konfiguration und Bestellung

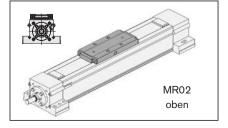
Kurzbezeich- nung, Länge AGK-020-NN-1, mm	Antrieb BASA KGT Größe Dich- Schmierung Vorspan-									Spindelenden		Steh- lager	Mutterngehäuse ohne SPU	Mutterngehäuse mit SPU Anzahl SPU		Mutterngehäuse Montagerichtung	Montagerichtung Montagerichtung	
	Mutter	20 x 5 °P	20 × 10 d	20 × 20	20 × 40	Toleranzklasse	Standard 6	Grund- beffettet	nungs- klasse	links (Festlager)	rechts (Loslager)	Aluminium		pr 1	o Seit	e ³⁾		
	ZEM-E	01	04	02	03	T5 T7	1	1	3	81	31	02	01	21	22	23	MR01 links MR02 oben MR03 rechts	

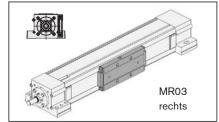

Bestellbeispiel: Siehe "Anfrage/Bestellung"


BASA = Kugelgewindetrieb

d₀ = Nenndurchmesser KGT (mm)


P = Steigung (mm) SPU = Spindelunterstützung


Spindelenden:



Mutterngehäuse Montagerichtung

Moto	ranbau				Motor	· §	Abdeckung		Schalter/ Dose-Stecker	Dokum	nentation
	Ausführung		ę.	für Motor	ohne Brei	mit mse	Stahl	PU			
,		Unter- setzung	Anbausatz ¹⁾							Standard- protokoll	Mess- protokoll
ohne Flansch	OF01		00	-	0	0					
sch	MF01		06	MSM 041B ²⁾	140	141			ohne Schalter	-	02
mit Flansch			02	MSK 040C ²⁾	86	87			ohne Dose-Stecker Magnetischer Sensor		Reib- moment
	Byot Byon		07	MSK 050C ²⁾	88	89	01	02	REED-Sensor 21	01	03
elege	RV01 RV02		32	MSM 041B ²⁾	140	141			Hall-Sensor PNP-Öffner Dose-Stecker 17		Steigungs- abweichung
mit Riemenvorgelege	RV03 RV04	i = 1	30	MSK 040C ²⁾	86	87			Bose Greeker 17		
mit Rie			23	MSK 050C ²⁾	88	89					

- 1) Anbausatz auch ohne Motor lieferbar (Bei Bestellung: für Motor "00" eintragen)
- 2) Empfohlener Motor (Motordaten und Typenbezeichnung 🗪 "Motoren")
- 3) SPU werden immer in gleicher Anzahl auf beiden Seiten des Mutterngehäuses angebracht Beispiel: 3 SPU (Option 13) ergeben insgesamt 6 SPU (je 3 links und je 3 rechts)

Längenberechnung

$$L = s_{max} + L_c + L_{ad}$$

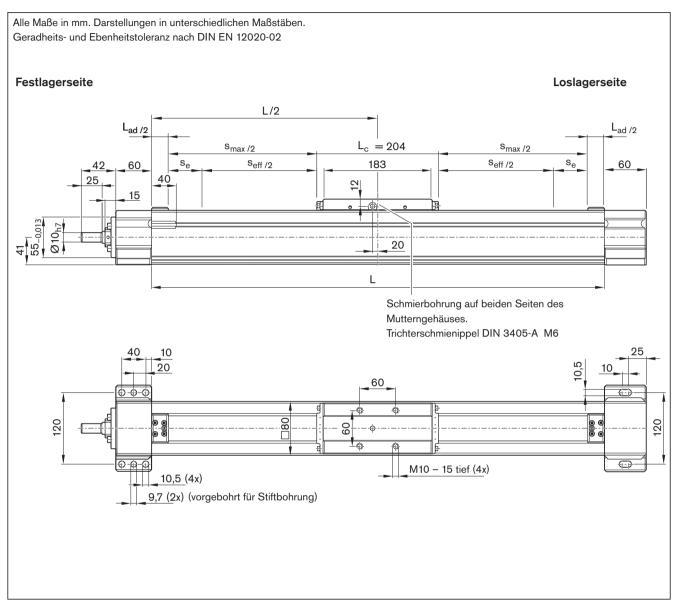
Effektiver Hub

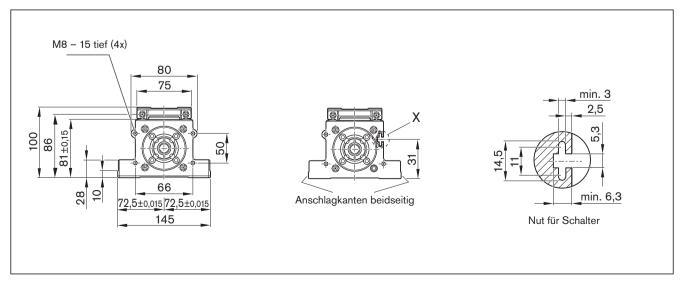
$$s_{eff} = s_{max} - 2 \cdot s_{e}$$

 s_e = Überlauf

s_{max} = Maximaler Verfahrweg

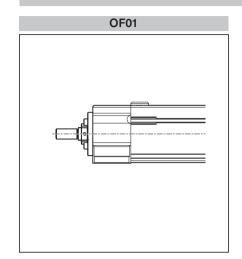
 s_{eff} = Effektiver Hub

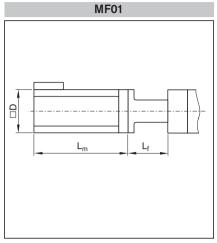

L = Länge

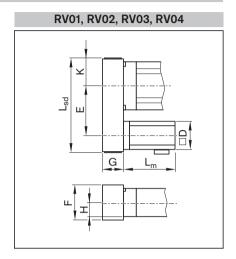

L_c = Länge Mutterngehäuse

 L_{ad} = Längenzuschlag (siehe Kapitel "Technische Daten")

Antriebseinheiten AGK


AGK-020 Maßbilder





Maßbilder Motoranbau

Ausführung

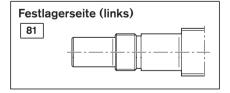
Ausführung	Motor	Maße (mm	1)								
		D	E	F	G	Н	K	L _f	L _m		L _{sd}
			i = 1						ohne	mit	i = 1
									Bremse	Bremse	
RV01, RV02,	MSM 041B	80	122,5	88	51	41	47,5	_	112,0	149,0	231
RV03, RV04	MSK 040C	82	122,5	88	51	41	47,5	-	185,5	215,5	231
	MSK 050C	100	155	116	66	41	56	-	203,0	233,0	287
MF01	MSM 041B	80	_	-	-	-	-	90	112,0	149,0	_
	MSK 040C	82	_	_	-	-	-	90	185,5	215,5	_
	MSK 050C	98	_	_	_	_	-	115	203,0	233,0	_

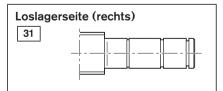
Weitere Informationen und Maße siehe Kapitel "Motoren" $L_{ad} = L$ ängenzuschlag (siehe Kapitel "Technische Daten")

AGK-032

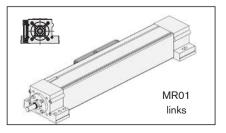
Konfiguration und Bestellung

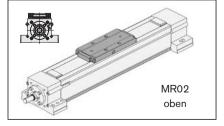
Kurzbezeich- nung, Länge AGK-032-NN-1, mm	Antrieb BASA									Spindelenden		Steh- lager	Mutterngehäuse ohne SPU	Mutte mit S		äuse	Mutterngehäuse Montagerichtung	
	Mutter	d _o :			1	Toleranzklasse	Dich- tung	Schmierung	Vorspan- nungs- klasse (1)		rechts (Loslager)	nium			zahl S o Seite			
		32 x (32 x 10	32 x 20	32 x 32	Toler	Standard	Grund- beffettet	5	links (rechts	Aluminium		1	2	3		
	ZEM-E	01	02	03	04	T5 T7	1	1	3	81	31	02	01	11	12	13	MR01 links MR02 oben MR03 rechts	

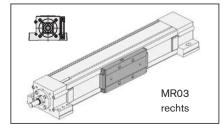

Bestellbeispiel: Siehe "Anfrage/Bestellung"


BASA = Kugelgewindetrieb

d₀ = Nenndurchmesser KGT (mm)


P = Steigung (mm) SPU = Spindelunterstützung


Spindelenden:



Mutterngehäuse Montagerichtung

Moto	ranbau Ausführung			für Motor	Motor	mit	Abdec	PU	Schalter/ Dose-Stecker		Dokum	entation
		Unter- setzung	Anbausatz ¹⁾		Bre	mse					Standard- protokoll	Mess- protokoll
ohne Flansch	OF01		00	-	0	0						
mit Flansch	MF01		03	MSK 060C ²⁾	90	91			ohne Schalter ohne Dose-Stecker	00		02 Reib-
mit Fi			02	MSK 076C ²⁾	92	93	01	02	Magnetischer Sensor	or 21	01	moment 03
orgelege	RV01 RV02	i = 1	23	MSK 060C ²⁾	90	91			Hall-Sensor PNP-Öffner Dose-Stecker	22 17		Steigungs- abweichung
mit Riemenvorgelege	RV03 RV04	i = 2	24	MSK 060C ²⁾	90	91						

- 1) Anbausatz auch ohne Motor lieferbar (Bei Bestellung: für Motor "00" eintragen)
- 2) Empfohlener Motor (Motordaten und Typenbezeichnung 🗪 "Motoren")
- 3) SPU werden immer in gleicher Anzahl auf beiden Seiten des Mutterngehäuses angebracht Beispiel: 3 SPU (Option 13) ergeben insgesamt 6 SPU (je 3 links und je 3 rechts)

Längenberechnung

$$L = s_{\text{max}} + L_{\text{c}} + L_{\text{ad}}$$

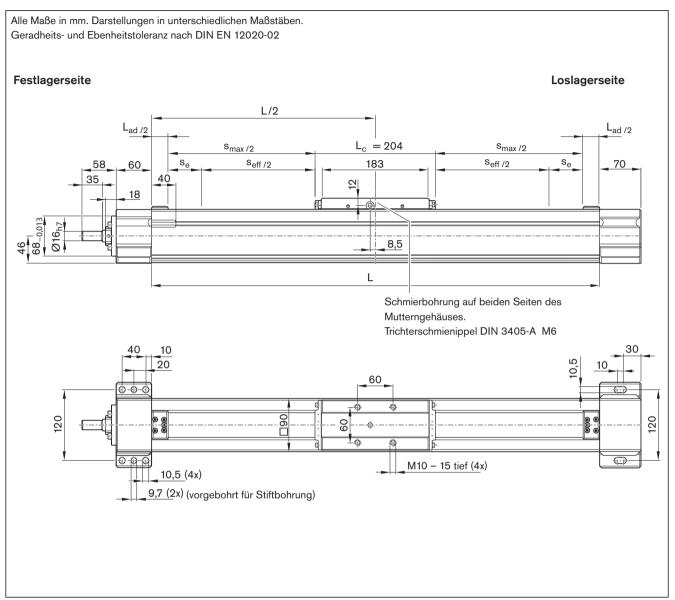
Effektiver Hub

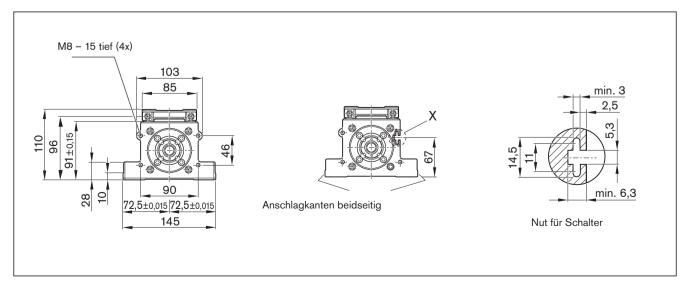
$$s_{eff} = s_{max} - 2 \cdot s_{e}$$

 s_e = Überlauf

s_{max} = Maximaler Verfahrweg

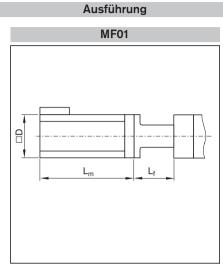
 s_{eff} = Effektiver Hub

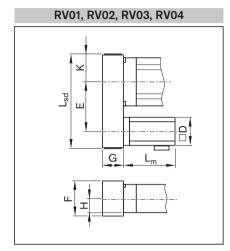

L = Länge


L_c = Länge Mutterngehäuse

 L_{ad} = Längenzuschlag (siehe Kapitel "Technische Daten")

Antriebseinheiten AGK


AGK-032 Maßbilder



Maßbilder Motoranbau

OF01

Ausführung	Motor	Maße (mm)										
		D	E		F	G	Н	K	L_{f}	L _m		L_{sd}	
			i = 1	i = 2						ohne	mit	i = 1	i = 2
										Bremse	Bremse		
RV01, RV02,	MSK 060C	116	165	162	116	66	46	59	-	226,0	259,0	300	300
RV03, RV04													
MF01	MSK 060C	116	-	-	_	_	_	_	125	226,0	259,0	_	_
	MSK 076C	140	_	_	_	_	_	_	133	292,5	292,5	_	_

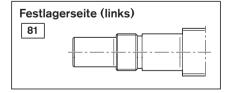
Weitere Informationen und Maße siehe Kapitel "Motoren" $L_{ad} = L$ ängenzuschlag (siehe Kapitel "Technische Daten")

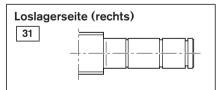
Antriebseinheiten AGK

AGK-040

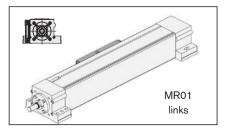
Konfiguration und Bestellung

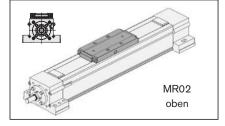
Kurzbezeich- nung, Länge AGK-040-NN-1, mm	Antrieb BASA									Spindelenden		Steh- lager	Mutterngehäuse ohne SPU	Mutte mit S	PU	äuse	Mutterngehäuse Montagerichtung	
	Mutter	KG d _o x		гößе	ı		Dich- tung	Schmierung	nungs- klasse		lager)				zahl S o Seite			
	Mutter	40 x 5	40 x 10	40 x 20	40 × 40	Toleranzklasse	Standard	Grund- beffettet	C1 (leicht)	links (Festlager)	rechts (Loslager)	Aluminium		1	2	3		
	7EM E	01				T5 T7	1	1	3	81	31	02	01	11	12	13	MR01 links	
	ZEM-E		02	03	04	T5 T7	1	1	3	81	31	02	01	21	22	23	oben MR03 rechts	

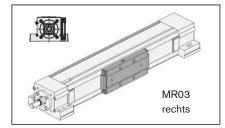

Bestellbeispiel: Siehe "Anfrage/Bestellung"


BASA = Kugelgewindetrieb

d₀ = Nenndurchmesser KGT (mm)


P = Steigung (mm) SPU = Spindelunterstützung


Spindelenden:



Mutterngehäuse Montagerichtung

Moto	ranbau Ausführung			für Motor	Motor ohne	mit	Abded	PU	Schalter/ Dose-Stecker	Dokum	entation
		Unter- setzung	Anbausatz 1)		Biei	ii3C				Standard- protokoll	Mess- protokoll
ohne Flansch	OF01		00	-	0	0					
mit Flansch	MF01		02	MSK 076C ²⁾	92	93	01	02	ohne Schalter ohne Dose-Stecker Magnetischer Sensor REED-Sensor 21	01	02 Reib- moment 03
mit Riemenvorgelege	RV01 RV02	i = 1	23	MSK 076C ²⁾	92	93			Hall-Sensor PNP-Öffner Dose-Stecker 17		Steigungs- abweichung
mit Riemer	RV03 RV04	i = 2	24	MSK 076C ²⁾	92	93					

- 1) Anbausatz auch ohne Motor lieferbar (Bei Bestellung: für Motor "00" eintragen)
- 2) Empfohlener Motor (Motordaten und Typenbezeichnung 🗪 "Motoren")
- 3) SPU werden immer in gleicher Anzahl auf beiden Seiten des Mutterngehäuses angebracht Beispiel: 3 SPU (Option 13) ergeben insgesamt 6 SPU (je 3 links und je 3 rechts)

Längenberechnung

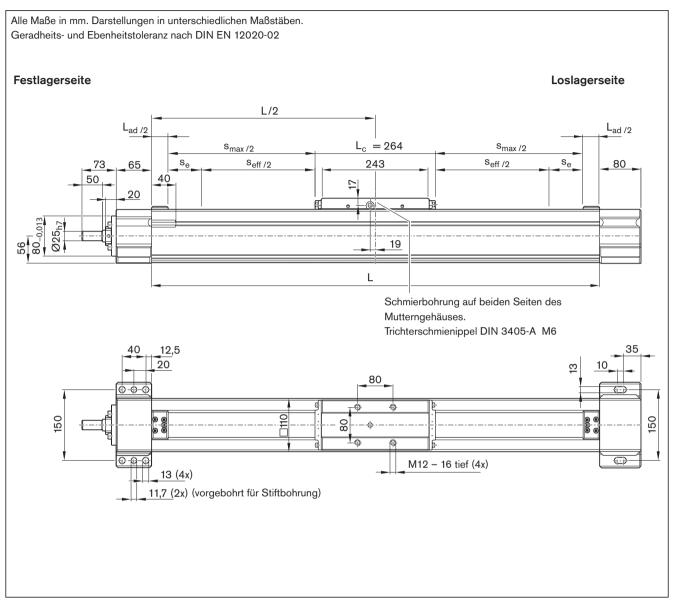
$$L = s_{max} + L_c + L_{ad}$$

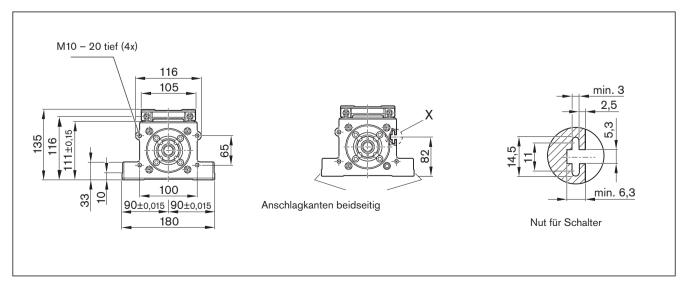
Effektiver Hub

$$s_{eff} = s_{max} - 2 \cdot s_{e}$$

 s_e = Überlauf

s_{max} = Maximaler Verfahrweg


s_{eff} = Effektiver Hub


L = Länge

L_c = Länge Mutterngehäuse

L_{ad} = Längenzuschlag (siehe Kapitel "Technische Daten")

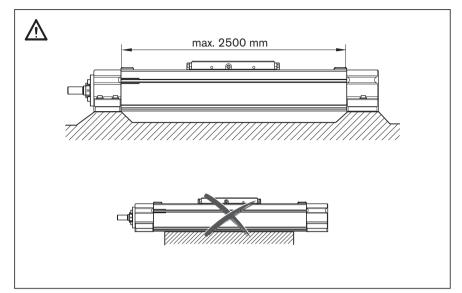
AGK-040 Maßbilder

Maßbilder Motoranbau

Ausführung OF01 MF01 RV01, RV02, RV03, RV04

Ausführung	Motor	Maße (m	nm)										
		D	E		F	G	Н	K	L _f	L _m		L_{sd}	
			i = 1	i = 2						ohne	mit	i = 1	i = 2
										Bremse	Bremse		
RV01, RV02,	MSK 076C	140	240	238	160	90	56	77	_	292,5	292,5	409	409
RV03, RV04													
MF01	MSK 076C	140	_	_	_	_	_	_	140	292,5	292,5	_	_

Weitere Informationen und Maße siehe Kapitel "Motoren" $L_{ad} = L$ ängenzuschlag (siehe Kapitel "Technische Daten")


Befestigungshinweise AGK

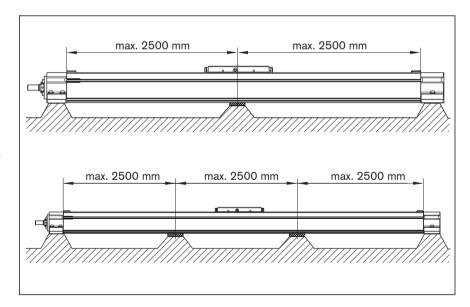
Befestigung von Antriebseinheit und Kundenaufbau

Befestigungspunkte Antriebseinheit

Antriebseinheit ausschließlich an den beiden Stehlagern befestigen. Das Schutzprofil ist kein tragendes Teil und darf daher keine Kräfte übertragen.

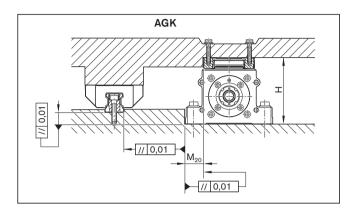
Nähere Infos zur Befestigung siehe "Anleitung für Antriebseinheiten AGK" R310D4 3372

Schutzprofil abstützen

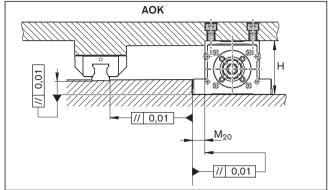

Unter dem Eigengewicht kann sich das Schutzprofil durchbiegen.

Deshalb müssen ab einer freien Länge L von mehr als 2500 mm Auflagen für das Schutzprofil vorgesehen werden.

- Abstand zwischen den Auflagepunkten: max. 2500 mm
- Auflageflächen der Schutzprofilauflagen und der Stehlager sollten sich auf einer Ebene befinden.


Im Betrieb hebt sich das Schutzprofil bei Überfahren des Antriebsschlittens und senkt sich anschließend wieder auf die Auflagefläche ab.

Deshalb die Auflägeflächen der Schutzprofilauflagen mit Dämpfung versehen, z.B. Moosgummi-Matte aufkleben

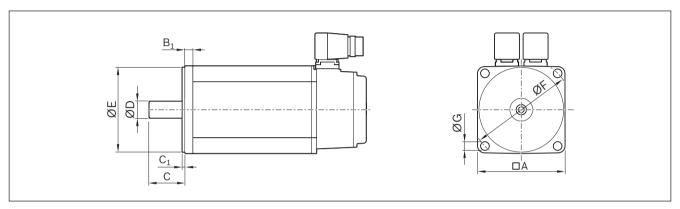


Einbautoleranzen AGK / AOK

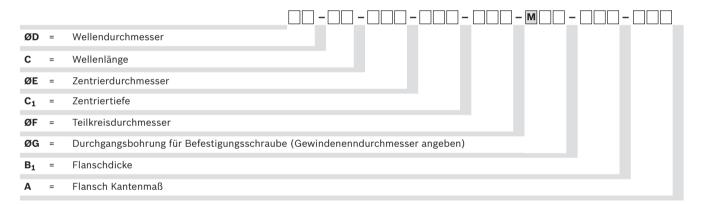
Parallelität von Kundenaufbau, Stehlagern und Schienenführungen

	Maße (mm)	
	H ±0,01	M ₂₀ ±0,01
AGK-020	100	35,0
AGK-032	110	30,0
AGK-040	135	37,5

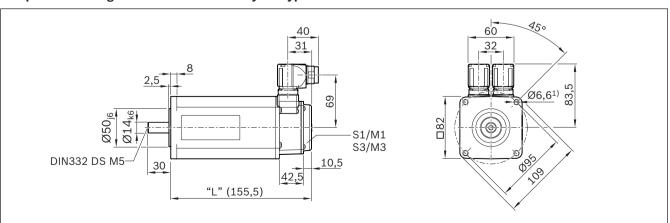
AOK-020	Mutter	Muttern-	Maße (mm)	
$d_0 \times P$		gehäuse	H ±0,01	$M_{20}^{\pm 0,01}$
20 x 5	ZEM-E	MGA	85	35
	FEM-E-S	MGS	73	35
	FEM-E-C	MGD	69	35
20 x 10	ZEM-E	MGA	85	35
	FEM-E-S	MGS	73	35
	FEM-E-C	MGD	73	35
20 x 20	ZEM-E	MGA	85	35
	FEM-E-S	MGS	75	30
	FEM-E-C	MGD	69	35
20 x 40	ZEM-E	MGA	85	35
	FEP-E-S	MGS	75	30


AOK-032	Mutter	Muttern-	Maße (mm)	
d _o x P		gehäuse	H ±0,01	M ₂₀ ±0,01
32 x 5	ZEM-E	MGA	95	22,5
	FEM-E-S	MGS	84	25
	FEM-E-C	MGD	81	22,5
32 x 10	ZEM-E	MGA	95	22,5
	FEM-E-S	MGS	84	25
	FEM-E-C	MGD	81	22,5
32 x 20	ZEM-E	MGA	95	22,5
	FEM-E-S	MGS	88	20
	FEM-E-C	MGD	81	22,5
32 x 40	ZEM-E	MGA	95	22,5
	FEP-E-S	MGS	88	20
	FEM-E-C	MGD	81	22,5

AOK-040	Mutter	Muttern-	Maße (mm)	
$d_0 \times P$		gehäuse	H ±0,01	$M_{20}^{\pm 0,01}$
40 x 5	ZEM-E	MGA	115	30
	FEM-E-S	MGS	98	37,5
	FEM-E-C	MGD	98	30
40 x 10	ZEM-E	MGA	115	30
	FEM-E-S	MGS	106	30
	FEM-E-C	MGD	98	30
40 x 20	ZEM-E	MGA	115	30
	FEM-E-S	MGS	106	30
	FEM-E-C	MGD	98	30
40 x 40	ZEM-E	MGA	115	30
	FEP-E-S	MGS	114	20
	FEM-E-C	MGD	98	30

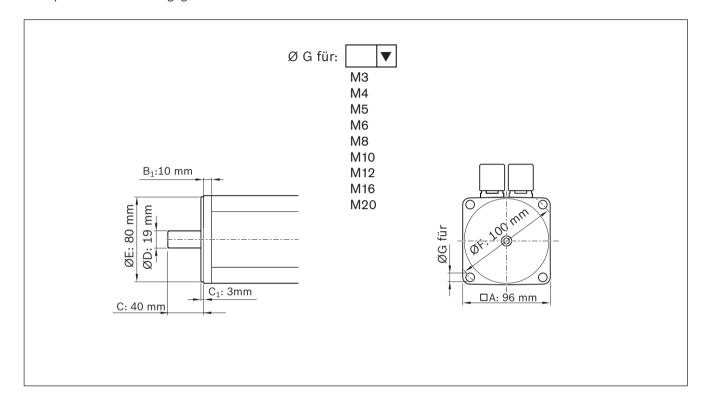

Anbausätze für Motoren nach Kundenwunsch

Der Motoranbau bei Linearsystemen mit Kugelgewindetrieb besteht wahlweise aus einem Anbausatz mit Flansch und Kupplung (MF) oder einem Riemenvorgelege (RV).


Die verfügbaren Kombinationen werden in den Auswahltabellen "Konfiguration und Bestellung" der jeweiligen Baugröße dargestellt. Neben Motor-Anbausätzen für Rexroth Motoren besteht zusätzlich die Möglichkeit, Anbausätze für Motoren nach Kundenwunsch zu bestellen. Zur Festlegung des passenden Anbausatzes ist die Anschlussgeometrie des Motors ausschlaggebend. Die erforderlichen Merkmale zur eindeutigen Bestimmung der Motorgeometrie sind nachfolgend dargestellt.

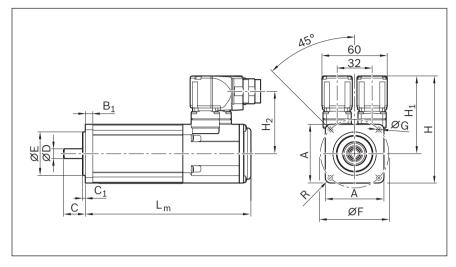
Die abgefragten Maße ergeben einen eindeutigen "Motorgeometrie-Code":

Beispieldarstellung für Servomotor IndraDyn S Typ MSK040C



1 4 - 3 0 - 0 5 0 - 2 . 5 - 0 9 5 - M 0 6 - 0 0 8 - 0 8 2

¹⁾ Aus der Durchgangsbohrung Ø 6,6 mm ergibt sich für den Motorgeometriecode die Typbezeichnung M06 (Gewinde-Nenndurchmesser Befestigungsschraube M6).


Motoranbausätze für Motoren nach Kundenwunsch können mit dem Online-Konfigurator im Rexroth eShop konfiguriert werden. Voraussetzung hierfür ist die Auswahl der Option "Anbausatz für Motor nach Kundenwunsch".

Zur Eingabe der Motorgeometrie steht ein Erfassungsdialog zur Verfügung. Die Maße können über Direkteingabe oder pull-down Menü eingegeben werden.

IndraDyn S - Servomotoren MSK

Motordarstellung schematisch

Motor	Maße	(mm))											
	Α	B ₁	С	C ₁	ØD	ØE	ØF	øG	Н	H ₁	H ₂		L _m	R
					k6	j6						ohne Haltebremse	mit Haltebremse	
MSK 040C-0600	82	8,0	30	2,5	14	50	95	6,6	124,5	83,5	69,0	185,5	215,5	R8
MSK 050C-0600	98	9,0	40	3,0	19	95	115	9,0	134,5	85,5	71,0	203,0	233,0	R8
MSK 060C-0600	116	9,5	50	3,0	24	95	130	9,0	156,5	98,5	84,0	226,0	259,0	R9
MSK 076C-0450	140	14,0	50	4,0	24	110	165	11,0	180,0	110,0	95,6	292,5	292,5	R12

Motordaten

Motor	n _{max}	M ₀	M _{max}	M _{br}	J _m	$J_{\rm br}$	m _m	m _{br}
	(min ⁻¹)	(Nm)	(Nm)	(Nm)	(kgm²)	(kgm²)	(kg)	(kg)
MSK 040C-0600	7 500	2,7	8,1	4	0,000140	0,000023	3,6	0,3
MSK 050C-0600	6 000	5,0	15,0	5	0,000330	0,000107	5,4	0,7
MSK 060C-0600	6 000	8,0	24,0	10	0,000800	0,000059	8,4	0,8
MSK 076C-0450	5 000	12,0	43,5	11	0,004300	0,000360	13,8	1,1

= Massenträgheitsmoment der Haltebremse

= Massenträgheitsmoment des Motors

= Länge des Motors

 M_0 = Stillstandsdrehmoment

= Haltemoment der Haltebremse in ausgeschaltetem Zustand

 M_{max} = Maximal mögliches Motordrehmoment

m_m = Masse des Motors
m_{br} = Masse der Haltebremse
n_{max} = Maximaldrehzahl

Optionsnummer ¹⁾	Motor	Materialnummer	Ausfüh	rung	Typenschlüssel
			Haltebr	emse	
			Ohne	Mit	
86	MSK040C-0600	R911306060	Х		MSK040C-0600-NN-M1-UG0-NNNN
87	7	R911306061		Х	MSK040C-0600-NN-M1-UG1-NNNN
88	MSK050C-0600	R911298354	Х		MSK050C-0600-NN-M1-UG0-NNNN
89		R911298355		Х	MSK050C-0600-NN-M1-UG1-NNNN
90	MSK060C-0600	R911306052	Х		MSK060C-0600-NN-M1-UG0-NNNN
91	7	R911306053		Х	MSK060C-0600-NN-M1-UG1-NNNN
92	MSK076C-0450	R911318098	Х		MSK076C-0450-NN-M1-UG0-NNNN
93		R911315713		Х	MSK076C-0450-NN-M1-UG1-NNNN

¹⁾ aus Tabelle "Konfiguration und Bestellung"

Ausführung

- ► Glatte Welle mit Wellendichtung
- ► Multiturn-Absolutgeber M1 (Hiperface)
- ► Kühlung: natürliche Konvektion
- ► Schutzart IP65 (Gehäuse)
- ▶ Mit und ohne Haltebremse

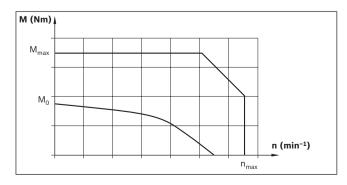
Hinweis

Die Motoren sind komplett mit Regelgeräten und Steuerungen lieferbar. Weitere Motortypen und nähere Informationen zu Motoren, Regelgeräten und Steuerungen finden Sie in den Rexroth Katalogen zur Antriebstechnik.

Motor

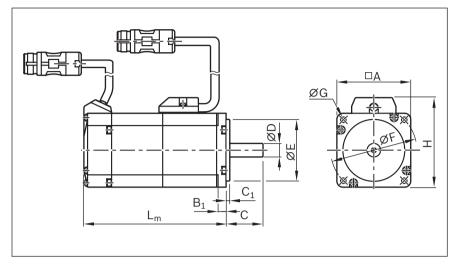
Rexroth Medienverzeichnis

Empfohlene Motor-Regler-Kombination



MSK 040C-0600 HCS 01.1E-W0008 MSK 040C-0600 HCS 01.1E-W0018 MSK 050C-0600 HCS 01.1E-W0028 MSK 060C-0600 HCS 01.1E-W0054 MSK 076C-0450

Regler


Motorkennlinie

(Schematisch)

IndraDyn S - Servomotoren MSM

Motordarstellung schematisch

Motor	Maße (mm)									
	А	B ₁	С	C ₁	ØD	ØE	ØF	øG	н		L _m
					h6	h7				ohne Haltebremse	mit Haltebremse
MSM 041B-0300	80	8,0	35	3	19	70	90	6,0	93	112,0	149,0

Motordaten

Motor	n _{max}	M _o	M _{max}	M _{br}	J _m	J_{br}	m _m	m _{br}
	(min ⁻¹)	(Nm)	(Nm)	(Nm)	(kgm²)	(kgm²)	(kg)	(kg)
MSM 041B-0300	4 500	2,40	7,10	2,45	0,0000870	0,0000075	2,30	0,80

= Massenträgheitsmoment der Haltebremse

Massenträgheitsmoment des MotorsLänge des Motors

= Stillstandsdrehmoment

= Haltemoment der Haltebremse in ausgeschaltetem Zustand

 M_{max} = Maximal mögliches Motordrehmoment

m_m = Masse des Motors m_{br} = Masse der Haltebremse n_{max} = Maximaldrehzahl

Optionsnummer ¹⁾	Motor	Materialnummer	Ausführung		Typenschlüssel
			Haltebremse		
			Ohne	Mit	
140	MSM 041B-0300	R911344217	Х		MSM 041B-0300-NN-M5-MH0
141		R911344218		Х	MSM 041B-0300-NN-M5-MH1

¹⁾ aus Tabelle "Konfiguration und Bestellung"

Ausführung:

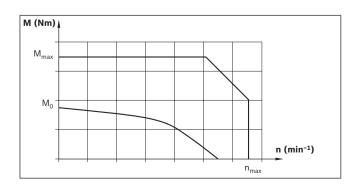
- ► Glatte Welle ohne Wellendichtung
- Multiturn-Absolutgeber M5 (20 Bit, Absolutgeberfunktionalität nur mit Pufferbatterie möglich)
- ► Kühlung: natürliche Konvektion

- Schutzart IP54 (Welle IP40)
- ▶ Mit und ohne Haltebremse
- ► Metall-Rundstecker M17

Hinweis

Die Motoren sind komplett mit Regelgeräten und Steuerungen lieferbar. Weitere Motortypen und nähere Informationen zu Motoren, Regelgeräten und Steuerungen finden Sie in den Rexroth Katalogen zur Antriebstechnik.

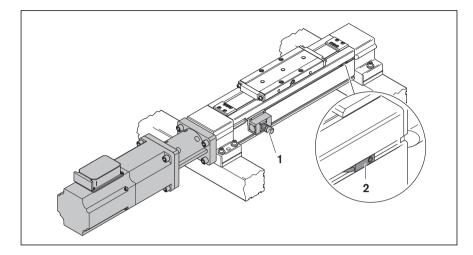
Rexroth Medienverzeichnis


Empfohlene Motor-Regler-Kombination

Motor	Regler
MSM 041B-0300	HCS 01.1E-W0013

Motorkennlinie

(Schematisch)



Anbauteile und Zubehör

Schalteranbau AGK

Übersicht des Schaltsystems

- 1 Dose und Stecker
- 2 Magnetfeldsensor

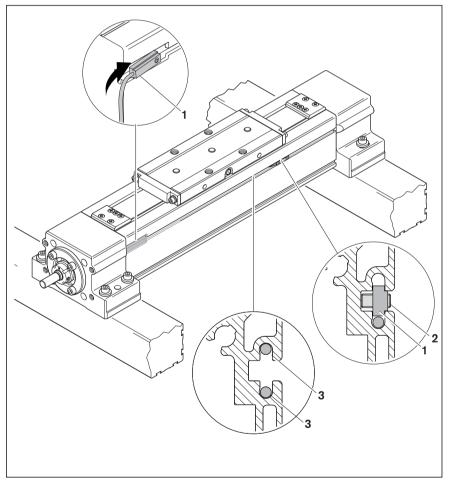
Schalteranbau

- 1 Schalter (Magnetfeldsensor) mit fest eingegossenem Kabel
- 2 Gewindestift zum Fixieren
- 3 Kabel

Der Schaltgeber ist ein Magnet, der im Mutterngehäuse integriert ist (kein Schaltwinkel nötig).

Die Schaltpositionen können über den Hub frei eingestellt werden.

Ausführung


- Hall-Sensor (PNP-Öffner) oder
- Reed-Sensor (Wechsler)

Technische Daten siehe Kapitel "Sensoren".

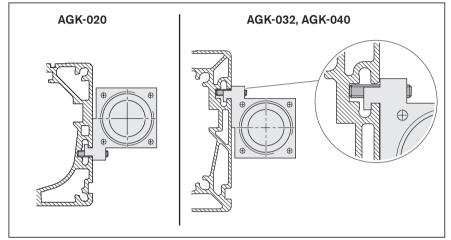
Montagehinweise

- Sensor (1) mit Gewindestift (2) nach außen in die obere T-Nut des Gehäuses einführen.
- Schaltpunkt einstellen und Sensor mit Gewindestift (2) fixieren.
- Die Signalleitung (3) in die obere oder untere Kabelführung der T-Nut eindrücken und dadurch fixieren.

Genaue Hinweise zur Montage und Schaltposition siehe Anleitung.

Anbau Dose-Stecker

Einbaulage

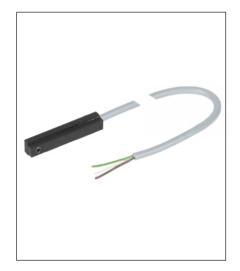

Je nach Erfordernissen sind verschiedene Anordnungen von Dose und Stecker möglich.

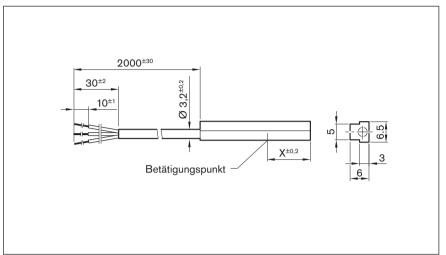
Technische Daten siehe Kapitel "Dose und Stecker".

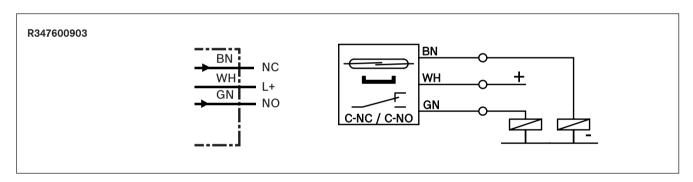
Dose am AGK-Schutzprofil befestigen

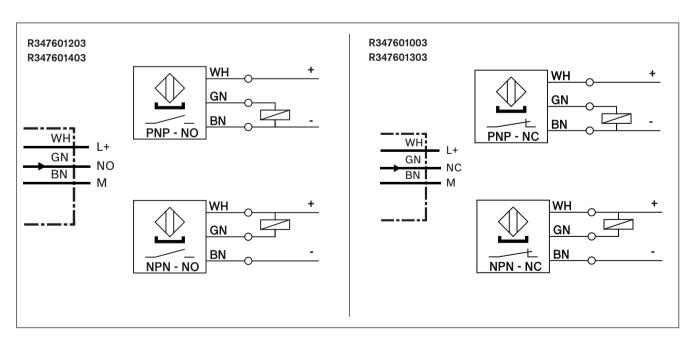
- AGK-020:
 - Dose in untere T-Nut am Schutzprofil einhängen und mit zwei Gewindestiften fixieren.
- AGK-032, AGK-040:
 Dose in obere T-Nut am Schutzprofil einhängen und mit zwei Gewindestiften fixieren.

Schalter und Anbauteile


Beschreibung	Schalt	funktion	Options- nummer ¹⁾	Material- nummer
Dose-Stecker		_	17	R117500153
Magnetischer Sensor	REED	Wechslerkontakt (NC: C+NC; NO:C+NO)	21	R347600903
	Hall	PNP / Öffner (NC)	22	R347601003
	Hall	PNP / Schließer (NO)	nv ²⁾	R347601203
	Hall	NPN / Öffner (NC)	nv ²⁾	R347601303
	Hall	NPN / Schließer (NO)	nv ²⁾	R347601403


 $^{^{}f 1)}$ Aus Tabelle "Komponenten und Bestellung"


²⁾ Option nicht verfügbar. Schalter nur als Zubehör mit Materialnummer bestellbar.


Sensoren

Magnetischer Sensor mit freiem Leitungsende

Materialnummer R347600903

Verwendung	Referenz Endschalter
Materialnummer	R347600903
Bezeichnung	R12212
Funktionsprinzip	magnetisch
Betriebsspannung	max. 30 V DC
Laststrom	500 mA
Schaltfunktion	REED/ Wechslerkontakt (NC: C+NC, NO: C+NO)
Betätigungspunkt (Maß "X")	9 mm

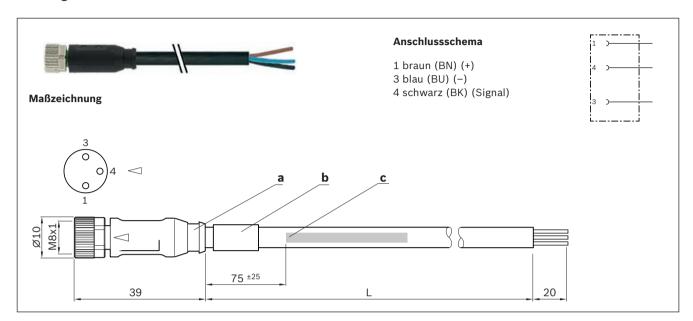
Materialnummern R347601003 / R347601203 / R347601403 / R347601303

Verwendung	Endschalter	Referenzschalter	Endschalter	Referenzschalter			
Materialnummer	R347601003	R347601203	R347601303	R347601403			
Bezeichnung	H14118	H15637	H15638	H15080			
Funktionsprinzip		magnetisch					
Betriebsspannung		3.8 - 30	V DC				
Laststrom		≤ 20	mA				
Schaltfunktion	Hall	Hall	Hall	Hall			
	PNP/Öffner (NC)	PNP/Schließer (NO)	NPN/Öffner (NC)	NPN/Schließer (NO)			
Betätigungspunkt Maß "X"	13,65	mm					

Technische Daten für R347600903 / R347601003 / R347601203 / R347601403 / R347601303

Anschlussart	Leitung 2,0 m, 3-polig
Anschlussenden verzinnt	4
Funktionsanzeige	
Kurzschlussschutz	_
Verpolungsschutz	_
Einschaltimpulsunterdrückung	_
Schaltfrequenz	2,5 kHz
Pulsverlängerung (Off delay)	_
Max. zul. Anfahrgeschwindigkeit	2 m/s
Schleppkettentauglich*	_
Torsionstauglich*	_
Schweißfunkenbeständig*	-
Leitungsquerschnitt*	3x0,14 mm ²
Kabeldurchmesser D	3,2 ±0,20 mm
Biegeradius statisch*	-
Biegeradius dynamisch*	-
Biegezyklen*	-
Max. zul. Verfahrgeschwindigkeit*	-
Max. zul. Beschleunigung*	-
Umgebungstemperatur	−40 °C bis +85 °C
Schutzart	IP66
MTTFd (nach EN ISO 13849-1)	-
Zertifizierungen und	_
Zulassungen**	

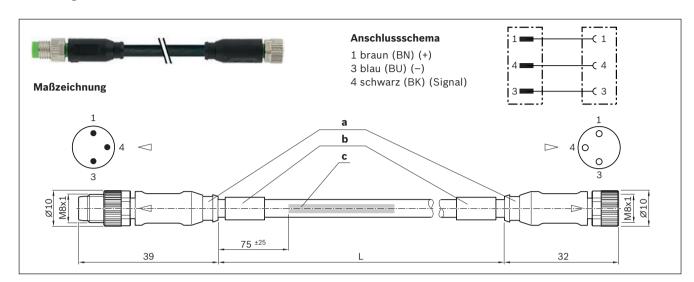
^{*)} Technische Daten nur für die angegossene Anschlussleitung am Sensor.


Noch mehr Performance, z.B. für den Einsatz in einer Energiekette, bieten die angebotenen Verlängerungsleitungen (siehe folgende Seiten).

^{**)} Für diese Produkte ist kein 🕊 Zertifikat zur Einführung in den chinesischen Markt erforderlich.

Anbauteile und Zubehör

Verlängerungen


Einseitig konfektioniert

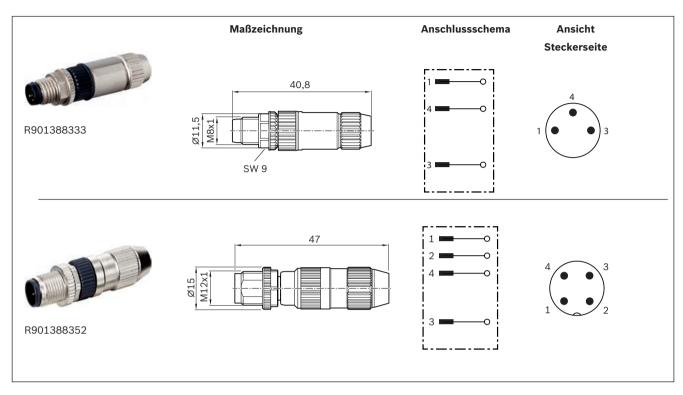
Materialnummern

Verwendung		Verlängerungsleitung	
Materialnummer	R911344602	R911344619	R911344620
Bezeichnung	7000-08041-6500500	7000-08041-6501000	7000-08041-6501500
Länge (L)	5,0 m	10,0 m	15,0 m
1. Anschlussart		Buchse gerade, M8 x 1, 3-polig	
2. Anschlussart		freies Leitungsende	

Beidseitig konfektioniert

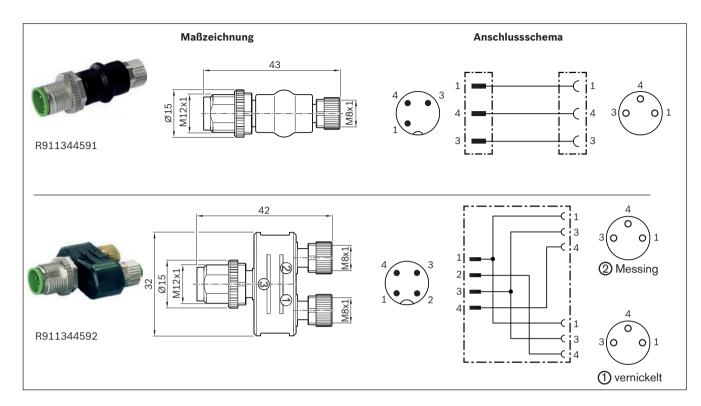
Materialnummern

Verwendung	Verlängerungsleitung				
Materialnum-	R911344621	R911344622	R911344623	R911344624	R911344625
mer					
Bezeichnung	7000-88001-	7000-88001-	7000-88001-	7000-88001-	7000-88001-
	6500050	6500100	6500200	6500500	6501000
Länge (L)	0,5 m	1,0 m	2,0 m	5,0 m	10,0 m
1. Anschlussart	Buchse gerade, M8x1, 3-polig				
2. Anschlussart	Stecker gerade, M8x1, 3-polig				


Technische Daten für ein- und beidseitig konfektionierte Verlängerungen

Funktionsanzeige	-		
Betriebsspannungsanzeige	-		
Betriebsspannung	10 - 30 V DC		
Kabelart	PUR schwarz		
Schleppkettentauglich	✓		
Torsionstauglich	✓		
Schweißfunkenbeständig	✓		
Leitungsquerschnitt	3x0,25 mm ²		
Kabeldurchmesser D	4,1 ±0,2 mm		
Biegeradius statisch	≥ 5xD		
Biegeradius dynamisch	≥ 10xD		
Biegezyklen	> 10 Mio.		
Max. zul. Verfahrgeschwindigkeit	3,3 m/s - bei 5 m Verfahrweg (typ.) bis 5 m/s - bei 0,9 m Verfahrweg		
Max. zul. Beschleunigung	≤ 30 m/s²		
Umgebungstemperatur fest verl.	-40 °C bis +85 °C		
Umgebungstemperatur flexibel verl.	-25 °C bis +85 °C		
Schutzart	IP68		
Zertifizierungen und Zulassungen	C E COUSTED CO ROHS		

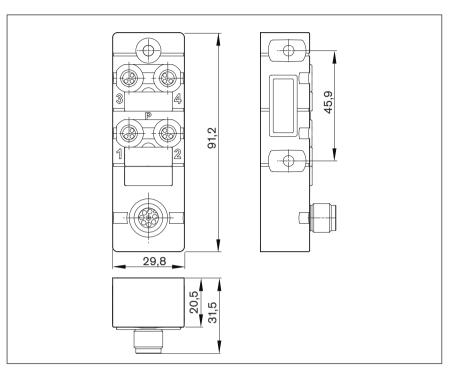
- a) Kontur für Wellschlauch Innendurchmesser 6,5 mm
- **b)** Kabeltülle
- c) Kabelaufdruck laut Bedruckungsvorschrift

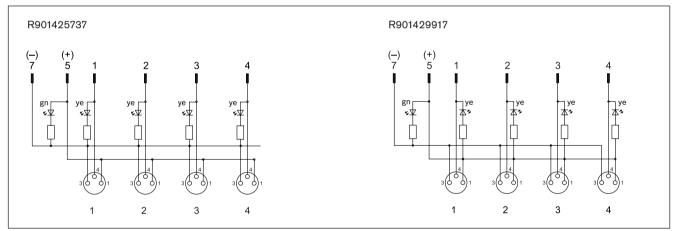

Anbauteile und Zubehör

Stecker

Verwendung	Stecker, einzeln		
Materialnummer	R901388333 R901388352		
Bezeichnung	7000-08331-0000000	7000-12491-0000000	
Ausführung	ger	ade	
Betriebsstrom je Kontakt	max	c. 4 A	
Betriebsspannung	max. 32	V AC/DC	
Anschlussart	Stecker gerade, M8x1, 3-polig, Schneidklemmtechnik, Schraubgewinde selbstsichernd	Stecker gerade, M12x1, 4-polig Schneidklemmtechnik, Schraubgewinde selbstsichernd	
Funktionsanzeige		-	
Betriebsspannungsanzeige		-	
Anschlussquerschnitt	0.140.34 mm ²		
Umgebungstemperatur	−25 °C bis +85 °C		
Schutzart	IP67 (gesteckt & verschraubt)		
Zertifizierungen und Zulassungen	c FL us (P	PG ROHS	

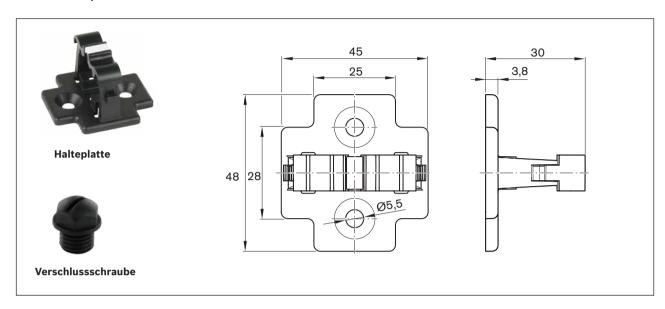
Adapter




Materialnummern / Technische Daten

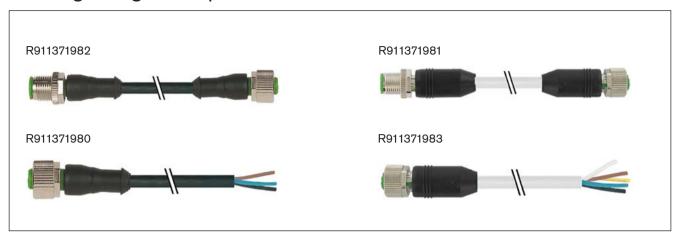
Verwendung	Adapter Adapter oder Verteiler		
Materialnummer	R911344591	R911344592	
Bezeichnung	7000-42201-0000000	7000-41211-0000000	
Ausführung	gerade für 1Sensor	gerade, für 1 - 2 Sensoren	
Betriebsstrom je Kontakt	max. 4 A		
Betriebsspannung	max. 32 V AC/DC		
1. Anschlussart	Buchse gerade, M8x1, 3-polig Schraubgewinde selbstsichernd	2 X Buchse gerade, M8x1, 3-polig Schraubgewinde selbstsichernd	
2. Anschlussart	Stecker gerade, M12x1, 3-polig, Stecker gerade, M12x1, 4-po Schraubgewinde selbstsichernd Schraubgewinde selbstsiche		
Funktionsanzeige	-	_	
Betriebsspannungsanzeige	-	-	
Anschlussquerschnitt	-		
Umgebungstemperatur	−25 °C bis +85 °C		
Schutzart	IP67 (gesteckt & verschraubt)		
Zertifizierungen und Zulassungen	RoHS	LUSTER PO ROHS	

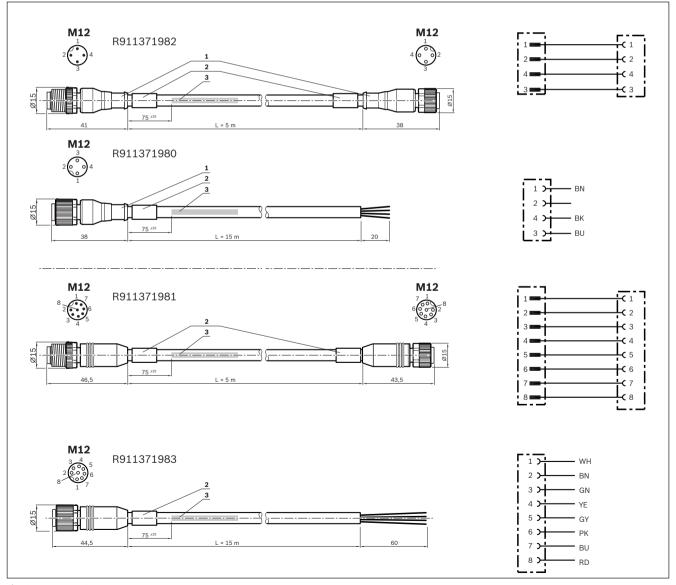
Verteiler passiv



Materialnummern/ Technische Daten

Verwendung	Verteiler passiv		
Materialnummer	R901425737	R901429917	R911344592
Bezeichnung	8000-84070-0000000	8000-84071-0000000	
Ausführung	gerade, für 1	gerade, für 1 - 4 Sensoren	
Betriebsstrom je Kontakt	max	max. 2 A	
Betriebsspannung	24 \	/ DC	
Schaltlogik	PNP NPN		
1.Anschlusart	4x Buchse gerade, M8x1, 3-polig, Schraubgewinde selbstsichernd		T
2.Anschlusart	Stecker gerade, M12x1, 8-polig, Schraubgewinde selbstsichernd		Techische Daten und
Funktionsanzeige	√		Maßzeichnung sieheAdapter
Betriebsspannungsanzeige	✓		Adapter
Anschlussquerschnitt			
Umgebungstemperatur	-20° bis +70°C		
Schutzart	IP67 (gesteckt & verschraubt)		
Zertifizierungen und Zulassungen	LISTED PC ROHS		

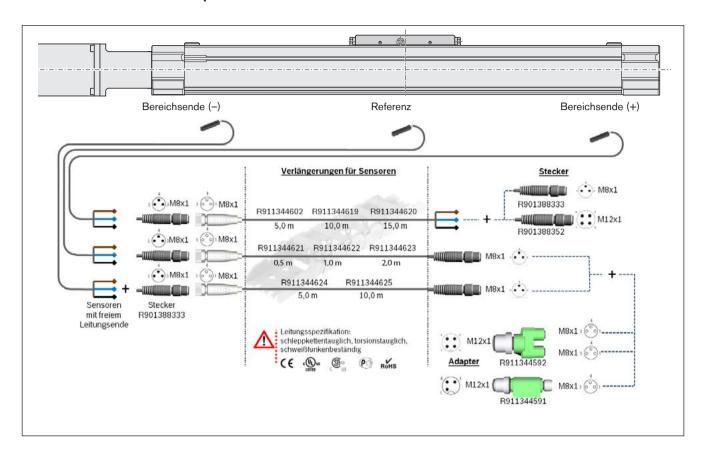

Zubehör für passiven Verteiler

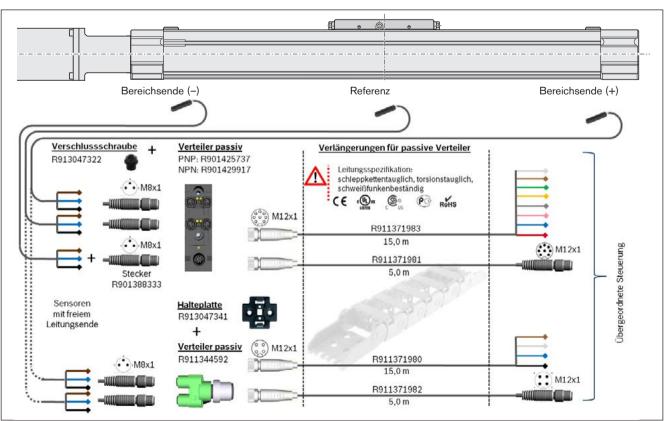


Materialnummern/ Technische Daten

Verwendung	Für passiven Verteiler R911344592	Für passive Verteiler R901425737/ R901429917
Halteplatte	R913047341	-
Bezeichnung	7000-99061-0000000	-
Verpackungseinheit	1 Stück	-
Verschlussschraube	-	R913047322
Bezeichnung	-	3858627
Verpackungseinheit	-	10 Stück

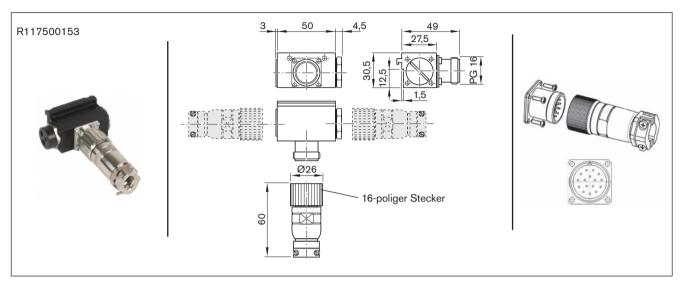
Verlängerungen für passiven Verteiler


- 1) Kontur für Wellenschlauch Innendurchmesser 10
- 2) Kabeltülle
- 3) Kabelaufdruck It. Bestellungsvorschrift 7000-08001


Bosch Rexroth AG, R999001325 (2017-05)

Materialnummern / Technische Daten

Verwendung	Verlängerungsleitung für passiven Verteiler R911344592		Verlängerungsleitung für passive Verteiler R901425737 / R901429917		
Materialnummer	R911371982	R911371980	R911371981	R911371983	
Bezeichnung	7000-40021-6540500	7000-12221- 6541500	7000-48001-3770500	7000-17041- 3771500	
Länge	5,0 m	15,0 m	5,0 m	15,0 m	
1.Anschlusart	Buchse gerade,	M12x1, 4-polig	Buchse gerade, M12x1, 8-polig		
2.Anschlusart	Stecker gerade, M12x1, 4-polig	freies Leitungsende	Stecker gerade, M12x1, 8-polig	freies Leitungsende	
Funktionsanzeige		-	-		
Betriebsspannungsanzeige		-	-		
Kabelart	PUR schwarz		PUR grau		
Betriebsspannung	30 V AC/DC				
Betriebsstrom je Kontakt	max.4A je Kontakt		max.2A je Kontakt		
Schleppkettentauglich	✓				
Torsionstauglich	✓				
Schweißfunkenbeständig	✓				
Leitungsquerschnitt	4x0,34	4x0,34 mm²		8x0,34 mm²	
Kabeldurchmesser D	4,7 +/-	4,7 +/- 0,2 mm		6,2 +/- 0,3 mm	
Biegeradius statisch	≥ 5 :		x D		
Biegeradius dynamisch	≥ 10 x D				
Biegezyklen	> 10 Mio.				
Max. zul. Verfahrgeschwindigkeit	3,3 m/s - bei 5m Verfahrweg (typ.) bis 5 m/s - bei 0,9m Verfahrweg				
Max. zul. Beschleunigung	<= 30 m/s ²				
Umgebungstemperatur fest verl.	-40°C bis +80°C (90° max. 10.000h)				
Umgebungstemperatur flexibel verl.	-25°C bis +80°C (90° max. 10.000h)				
Schutzart	IP67 (gesteckt & verschraubt)				
Zertifizierungen und Zulassungen	C E COUNT OF ROHS				


Kombinationsbeispiele

Dose und Stecker

Die Dose auf der Seite mit den magnetischen Sensoren anbringen. Dose und Stecker sind nicht verdrahtet. Durch den variabel verschiebbaren Anbau können die Schaltpositionen bei der Inbetriebnahme optimiert werden. Der Stecker ist in drei Richtungen montierbar.

Verwendung	Dose und Stecker
Materialnummer	R117500153
Bezeichnung	für AGK-020, -032, -040
Ausführung	gewinkelt, zum Einhängen in die seitliche Nut des Linearsystems
Betriebsstrom je Kontakt	max. 8 A
Betriebsspannung	150V AC/DC
1.Anschlusart	Stecker gerade, 16-polig,
	Lötanschluss
2.Anschlusart	Kupplung / Flanschdose, 16-polig,
	Lötanschluss
Leitungsdurchführung	1 Dichtung mit Bohrung 2x5,5 mm, 1x3,5 mm
Gehäuse	1 Dichtung anpassbar, max. 14mm Durchmesser
	inkl. Verschluss- und Blindstopfen
Leitungsdurchführung Stecker	Verschraubung mit Zugentlastung
Anschlussquerschnitt	0.141 mm
Kabeldurchmesser	1014 mm
Umgebungstemperatur	-20°C bis +125°C
Schutzart	-
Zertifizierungen und Zulassungen	-

Betriebsbedingungen

Normale Betriebsbedingungen

Umgebungstemperatur mit Rexroth Servomotor	0 °C 40 °C, ab 40 °C Leistungseinbußen
Umgebungstemperatur Mechanik (Keine Taupunktunterschreitung)	-10 °C 60 °C
Verfahrweg s _{min} ¹⁾	siehe Tabellen "Technische Daten"
Schmutzbeaufschlagung	nicht zulässig

¹⁾ Minimaler Verfahrweg, um eine sichere Schmierverteilung zu gewährleisten.

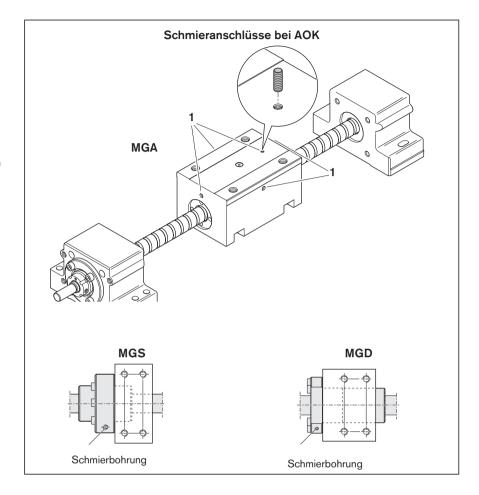
Erforderliche und ergänzende Dokumentationen

Weiterführende Hinweise und Informationen entnehmen Sie bitte der zu diesem Produkt gehörenden Dokumentation.

PDF Dateien dieser Dokumente finden Sie im Internet unter www.boschrexroth.com/mediadirectory.

Gerne senden wir Ihnen auch die gewünschten Dokumente zu.

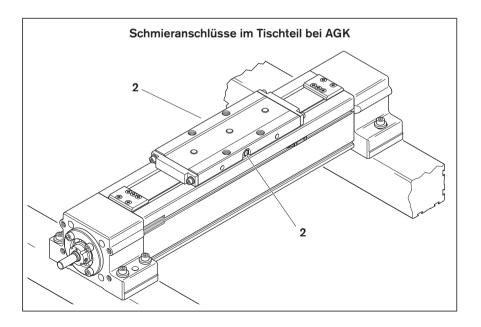
In Zweifelsfällen zum Einsatz dieses Produktes wenden Sie sich bitte an Bosch Rexroth.


Schmierung

Schmieranschlüsse

AOK

Das Gehäuse MGA hat je 1 Schmieranschluss (1) an den Seiten. Es reicht aus, an einem der 5 Schmieranschlüsse zu schmieren.


Bei allen anderen Ausführungen werden die Muttern geschmiert. Lage der Schmierbohrung siehe Maßbilder.

AGK

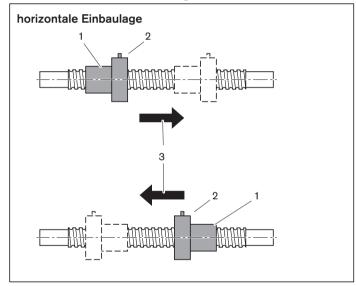
Das Tischteil hat je 1 Trichterschmiernippel (2) an den Seiten.

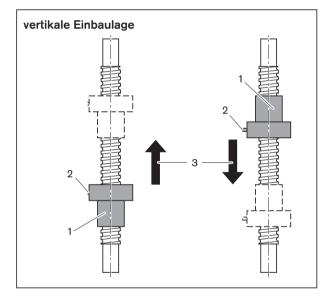
Es reicht aus, an einem der 2 Schmiernippel zu schmieren.

Service und Informationen

Schmierung

Übersicht


Die Kugelgewindetriebe der Antriebseinheiten sind werksseitig standardmäßig grundbefettet. Grundschmierung mit Schmierfett Dynalub 510 (Schmierstoff-Eigenschaften siehe Kapitel "Fettschmierung")


Zur Nachschmierung sind folgende Schmierverfahren grundsätzlich zulässig und werden im Nachgang in separaten Kapiteln beschrieben.

- Fettschmierung
 - mit Fettpressen oder Progressivanlagen
- Fließfettschmierung
 - mit Einleitungs-Verbrauchsschmieranlagen über Kolbenverteiler
- Ölschmierung
 - mit Einleitungs-Verbrauchsschmieranlagen über Kolbenverteiler

Unabhängig von den oben aufgelisteten Schmierverfahren ist beim Nachschmieren der Kugelgewindetrieb-Muttern die Positionsund Verfahranweisung gemäß nachfolgender Abbildung einzuhalten.

Positions- und Verfahranweisung

- 1 Position der Mutter beim Schmiervorgang
- 2 Flansch mit Schmieranschluss (bei horizontaler Einbaulage sollte Anschluss möglichst oben liegen)
- 3 Verfahrrichtung nach dem Schmieren. Verfahrweg $\geq s_{min}$ (siehe Tabellen "Technische Daten").

Basisinformationen zu Nachschmierintervallen:

Die in den folgenden Kapiteln angegebenen Schmierintervalle basieren auf dem Lastverhältnis F_m/C . Das Lastverhältnis beschreibt den Quotienten aus der mittleren Belastung F_m und der dynamischen Tragzahl C (siehe Kapitel "Berechnung"). Die Nachschmierintervalle sind belastungsabhängig und werden für den BASA in Umdrehungen aus dem zur Schmierart gehörenden Kennliniendiagramm abgelesen. In Abhängigkeit von der Steigung können die Umdrehungen in km umgerechnet werden. Bis zu einem Lastverhältnis von 0,2 sind die Schmierintervalle konstant und können deshalb auch direkt aus den Tabellen für Nachschmiermenge und -intervall abgelesen werden. Bei größeren Lastverhältnissen müssen die Nachschmierintervalle entsprechend ermittelt werden. Unabhängig von den anwendungsbezogenen Nachschmierintervallen muss nach spätestens 2 Jahren auch bei normalen Betriebsbedingungen aufgrund der Fettalterung nachgeschmiert werden.

Hinweise:

Achtung: Fette mit Festschmierstoffanteil (z. B. Graphit oder MoS₂) dürfen nicht verwendet werden!

Werden andere Schmierstoffe als in den nachfolgenden Kapiteln für die Schmierverfahren angegeben verwendet, müssen Sie gegebenenfalls mit verkürzten Nachschmierintervallen, sowie Leistungseinbußen hinsichtlich Kurzhub und Lastvermögen, sowie möglichen chemischen Wechselwirkungen zwischen Kunststoffen, Schmierstoffen und Konservierungsmittel rechnen.

Bei Hüben ≤ Verfahrweg s_{min} (gemäß Tabellen "Technische Daten") empfiehlt es sich öfters einen längeren Hub ("Schmierhub") gemäß Positions- und Verfahranweisung durchzuführen und gegebenenfalls das Schmierintervall zu verkürzen.

Sonderfall Kurzhub:

Kurzhub liegt vor, wenn Hub ≤ s_{min} / 2

Einfluss von Kurzhub auf die Lebensdauer:

Bei Kurzhub erhöht sich die Anzahl der Überrollungen eines Punktes im Lastbereich,

was zu einer Reduzierung der Lebensdauer führt.

Einfluss von Kurzhub auf

Bei Kurzhub findet kein vollständiger Kugelumlauf in der Mutter statt.

die Schmierung:

Dadurch erfolgt kein ausreichender Schmierfilmaufbau und es kann zu vorzeitigem

Verschleiß kommen.

Bei Anwendungen mit Kurzhub muss Rücksprache mit unseren Regionalzentren erfolgen, da diesbezügliche Auswirkungen auf Lebensdauer und Schmierung eine separate Prüfung erfordern.

Ihre lokalen Ansprechpartner finden Sie unter: www.boschrexroth.com/contact

Bei Anwendungen mit extremen Umgebungsbedingungen (wie z.B. starke Verschmutzung, Vibrationen, Stoßbelastung, aggressive Medienbeaufschlagung usw.) bitten wir um Rücksprache, da hier eine gesonderte Prüfung erforderlich ist und gegebenenfalls eine individualisierte Schmierempfehlung.

Service und Informationen

Schmierung

Fettschmierung

mit Fettpressen oder Progressivanlagen

Schmierfett: Wir empfehlen Dynalub 510 mit folgenden Eigenschaften:

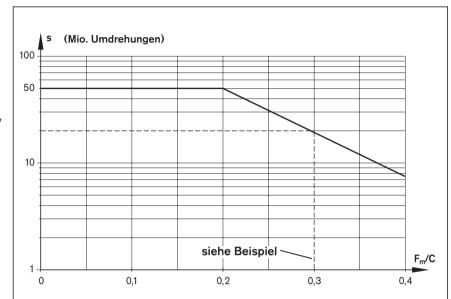
- Lithiumverseiftes Hochleistungsfett der NLGI-Klasse 2 nach DIN 51818 (KP2K-20 nach DIN 51825)
- Gute Wasserbeständigkeit
- Korrosionsschutz
- Temperaturbereich: -20 bis +80 °C

Produkt- und Sicherheitsdatenblatt sind auf unserer Internetseite unter www.boschrexroth.de erhältlich.

Bei Progressivanlagen ist stets darauf zu achten, dass alle Leitungen und Verteiler (inklusive des Anschlusses an die BASA-Mutter) schon befüllt sind, bevor eine Nachschmierung erfolgt.

Fettschmieru	ng		
		Nachschmiermenge	Nachschmierintervall
Größe	BASA	ZEM-E / FEM-E-S / FEP-E-S / FEM-E-C	auf Basis Lastverhältnis Fm/C ≤ 0,2
	d ₀ xP	(cm ³³)	(km)
AOK-020	20x5	1,0	250
AGK-020	20x10	1,5	500
	20x20	2,4	1 000
	20x40	1,8	2 000
AOK-032	32x5	2,2	250
AGK-032	32x10	3,1	500
	32x20	3,6	1 000
	32x32	5,5	1 600
AOK-040	40x5	3,0	250
AGK-040	40x10	6,7	500
7.0.1. 040	40x20	8,7	1 000
	40x40	14,3	2 000

Das Lastverhältnis F_m / C beschreibt den Quotienten aus der mittleren Belastung F_m und der dynamischen Tragzahl C (siehe "Berechnung").


Diagramm für Ermittlung belastungsabhängige Nachschmierintervalle bei Fettschmierung mit Fettpressen oder Progressivanlagen

Gültig bei folgenden Bedingungen:

- Schmierfett Dynalub 510 oder alternativ Castrol Longtime PD 2, Elkalub GLS 135/N2
- Keine Medienbeaufschlagung
- Umgebungstemperatur: T = 20 bis 30 °C
- = Nachschmierintervall in Mio. (10⁶ Umdr.) Umdrehungen

 Dynamische Tragzahl (N) $F_m = mittlere Belastung$ (N)

 d_0 = Nenndurchmesser (mm)

Umrechnung des Nachschmierintervalls s von Umdrehungen in Mio. auf Kilometer:

Beispiel:

AOK-032, BASA 32x20,

Aus Anwendung: Lastverhältnis $F_m/C = 0.3$ Aus Diagramm mit P = 20 mm und

 $F_m / C = 0.3$ abgelesen: 20 • 10⁶ Umdr.

s in Kilometer =
$$\frac{20 \cdot 10^6 \text{ (Umdr.)} \cdot 20 \text{ (mm)}}{10^6} = 400 \text{ km}$$

Service und Informationen

Schmierung

Fließfettschmierung

mit Einleitungs- und Verbrauchsschmieranlagen über Kolbenverteiler

Schmierfett

Wir empfehlen Dynalub 520 mit folgenden Eigenschaften:

- Lithiumverseiftes Hochleistungsfett der NLGI-Klasse 00 nach DIN 51818 (GP00K-20 nach DIN 51826)
- Gute Wasserbeständigkeit
- Korrosionsschutz
- Temperaturbereich: -20 bis +80 °C

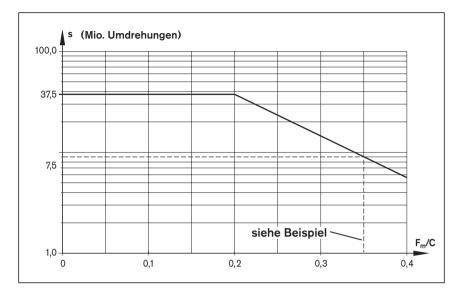
Produkt- und Sicherheitsdatenblatt sind auf unserer Internetseite unter www.boschrexroth.de erhältlich.


Bei Einleitungs-Verbraucherschmieranlagen ist stets darauf zu achten, dass alle Leitungen und Kolbenverteiler (inklusive des Anschlusses an die BASA-Mutter) schon befüllt sind, bevor eine Nachschmierung erfolgt.

Die benötigte Impulszahl ist der ganzzahlige Quotient aus der Nachschmiermenge nach Tabelle und der Kolbenverteilergröße. Dabei darf die kleinste zulässige Kolbenverteilergröße von 0,03 cm³² nicht unterschritten werden. Der Schmiertakt ergibt sich dann aus der Teilung des Nachschmierintervalls durch die ermittelte Impulszahl.

		Nachschmiermenge	Nachschmierintervall
Größe	BASA	ZEM-E / FEM-E-S / FEP-E-S / FEM-E-C	auf Basis Lastverhältnis Fm/C ≤ 0,2
	d ₀ xP	(cm ³³)	(km)
AOK-020	20x5	1,0	188
AGK-020	20x10	1,5	375
	20x20	2,4	750
	20x40	1,8	1 500
AOK-032	32x5	2,2	188
AGK-032	32x10	3,1	375
AGIT 002	32x20	3,6	750
	32x32	5,5	1 200
AOK-040	40x5	3,0	188
AGK-040	40x10	6,7	375
7.0.1. 0.10	40x20	8,7	750
	40x40	14,3	1 500

Das Lastverhältnis F_m / C beschreibt den Quotienten aus der mittleren Belastung F_m und der dynamischen Tragzahl C (siehe "Berechnung").


Diagramm für Ermittlung belastungsabhängige Nachschmierintervalle bei Einleitungs-Verbrauchsschmieranlagen über Kolbenverteiler und Fließfettschmierung

- Schmierfett Dynalub 520 oder alternativ Castrol Longtime PD 00, Elkalub GLS 135/N00
- Keine Medienbeaufschlagung
- Umgebungstemperatur: T = 20 bis 30 °C
- = Nachschmierintervall in Mio. Umdrehungen (10⁶ Umdr.)

= Dynamische Tragzahl (N)

F_m = mittlere Belastung d_0 = Nenndurchmesser (mm)

Umrechnung des Nachschmierintervalls s von Umdrehungen in Mio. auf Kilometer:

s in Kilometer =
$$\frac{\text{s in Mio. (Umdr.)} \cdot \text{Steigung P (mm)}}{10^6}$$

Beispiel:

AOK-032, BASA 32x10,

Aus Anwendung: Lastverhältnis $F_m / C = 0.35$

Aus Diagramm mit P = 10 mm und $F_m/C = 0.35$ abgelesen: 10 • 10⁶ Umdr.

s in Kilometer =
$$\frac{10 \cdot 10^{6} \text{ (Umdr.)} \cdot 20 \text{ (mm)}}{10^{6}} = 100 \text{ km}$$

Hinweis:

Wir empfehlen Kolbenverteiler der Fa. SKF. Diese sollten möglichst nahe an dem Schmieranschluss der Mutter angebracht werden. Lange Leitungsführungen sowie geringe Leitungsdurchmesser sind zu vermeiden und die Leitungen sind steigend zu

Sollten sich noch andere Verbraucher im Verbund der Einleitungs- Verbrauchsschmieranlage befinden, so bestimmt das schwächste Glied in dieser Kette den Schmiertakt.

Pumpenbehälter bzw. Vorratsbehälter für den Schmierstoff sollten entweder mit Rührwerk oder Folgekolben ausgestattet sein um das Nachfließen des Schmierstoffs zu gewährleisten (Vermeidung der Trichterbildung im Behälter).

Service und Informationen

Schmierung

Ölschmierung

mit Einleitungs- und Verbrauchsschmieranlagen über Kolbenverteiler

Schmieröl

Wir empfehlen Shell Tonna S 220 mit folgenden Eigenschaften:

- Demulgierendes Spezialöl der CLP bzw. CGLP nach DIN 51517-3 für Bettbahnen und Werkzeugführungen
- Mischung aus hochraffinierten Mineralölen und Additiven
- Verwendbar auch bei intensiver Vermischung mit Kühlschmierstoffen

Bei Einleitungs-Verbraucherschmieranlagen ist stets darauf zu achten, dass alle Leitungen und Kolbenverteiler (inklusive des Anschlusses an die BASA-Mutter) schon befüllt sind, bevor eine Nachschmierung erfolgt.

Die benötigte Impulszahl ist der ganzzahlige Quotient aus der Nachschmiermenge nach Tabelle und der Kolbenverteilergröße. Dabei darf die kleinste zulässige Kolbenverteilergröße von 0,03 cm³² nicht unterschritten werden. Der Schmiertakt ergibt sich dann aus der Teilung des Nachschmierintervalls durch die ermittelte Impulszahl.

Ölschmierung	g			
		Nachschmiermenge	Nachschmierintervall	
Größe	BASA	ZEM-E / FEM-E-S / FEP-E-S / FEM-E-C	auf Basis Lastverhältnis Fm/C ≤ 0,2	Zeit
	d ₀ xP	(cm ³³)	(km)	(h)
	20x5	0,06	5	
AOK-020	20x10	0,06	10	
AGK-020	20x20	0,06	20	
	20x40	0,06	40	
	32x5	0,06	5	
AOK-032	32x10	0,06	10	10
AGK-032	32x20	0,06	20	10
	32x32	0,06	32	
	40x5	0,40	5	
AOK-040	40x10	0,40	10	
AGK-040	40x20	0,40	20	
	40x40	0,40	40	

Das Lastverhältnis F_m / C beschreibt den Quotienten aus der mittleren Belastung F_m und der dynamischen Tragzahl C (siehe "Berechnung").

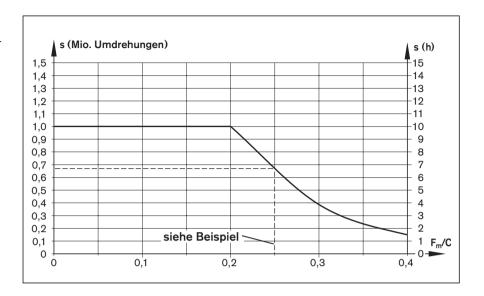

Das Nachschmierintervall s bestimmt sich entweder aus der Anzahl der Umdrehungen in Mio. bzw. der Laufzeit in km oder Stunden. Der zuerst erreichte Wert definiert das Schmierintervall.

Diagramm für Ermittlung belastungsabhängige Nachschmierintervalle bei Öl-Schmierung mit Einleitungs-Verbrauchsschmieranlagen über Kolbenverteiler.

Gültig bei folgenden Bedingungen:

- Schmieröl Shell Tonna S 220
- Keine Medienbeaufschlagung
- Umgebungstemperatur:T = 20 bis 30 °C

 $\begin{array}{ll} s = & \text{Nachschmierintervall} \\ C = & \text{Dynamische Tragzahl (N)} \\ F_m = & \text{mittlere Belastung (N)} \\ d_0 = & \text{Nenndurchmesser (mm)} \end{array}$

Umrechnung des Nachschmierintervalls s von Umdrehungen in Mio. auf Kilometer:

Beispiel:

AOK-020, BASA 20x20,

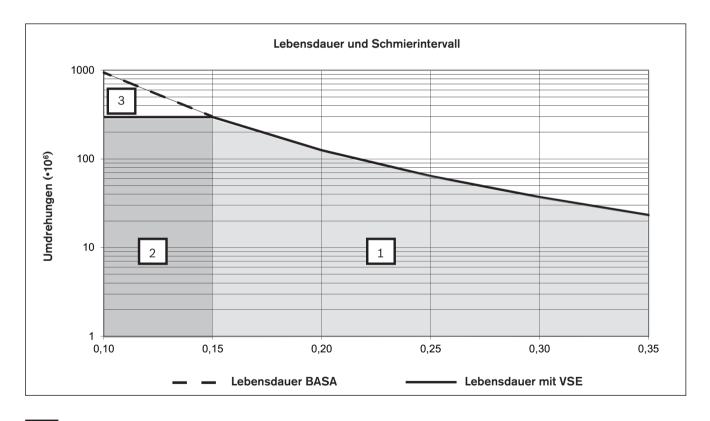
Aus Anwendung: Lastverhältnis $F_m/C = 0.25$

Aus Diagramm mit P = 20 mm und $F_m/C = 0.25$ abgelesen: $0.65*10^6$ Umdr.

s in Kilometer =
$$\frac{0.65 \cdot 10^6 \text{ (Umdr.)} \cdot 20 \text{ (mm)}}{10^6} = 13 \text{ km}$$

Hinweis:

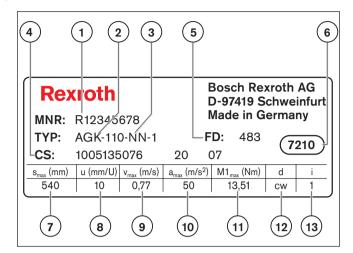
Wir empfehlen Kolbenverteiler der Fa. SKF. Diese sollten möglichst nahe an dem Schmieranschluss der Mutter angebracht werden. Lange Leitungsführungen sowie geringe Leitungsdurchmesser sind zu vermeiden und die Leitungen sind steigend zu verlegen.


Sollten sich noch andere Verbraucher im Verbund der Einleitungs- Verbrauchsschmieranlage befinden, so bestimmt das schwächste Glied in dieser Kette den Schmiertakt.

Schmierung

Vorsatzschmiereinheit (VSE)

Wurde zusätzlich eine VSE (nicht bei jeder Ausführung verfügbar) optional gewählt, dann wird diese komplett montiert mit einer grundbefetteten Mutter geliefert und ermöglicht sehr hohe Laufleistungen ohne Nachschmieren. Die VSE dient somit dem langfristigen, wartungsfreien Betrieb des Kugelgewindetriebs. Die Wirkungsdauer der VSE von Rexroth ist deckungsgleich mit der theoretischen Lebensdauerkurve des Kugelgewindetriebes für Laufstrecken von bis zu 300 Mio. Umdrehungen ohne Nachschmierung.



- Lebensdauerschmierung:
 Für Lastverhältnisse 0,15 ≤ F_m / C ≤ 0,35 (Diagrammbereich 1) entsprechen die ablesbaren Umdrehungen der theoretischen Lebensdauer des BASA und gleichzeitig der Wirkdauer der VSE. Der BASA ist somit lebensdauergeschmiert.
- Wartungsfrei bis 300 x 10⁶ Umdrehungen:
 Für Lastverhältnisse F_m / C < 0,15 (Diagrammbereich 2) ist der Kugelgewindetrieb wartungsfrei bis zur Grenze von 300 Mio. Umdrehungen. Bis zu dieser Grenze ist die intervallverlängerte Funktion der VSE gegeben.
- Nachschmierung notwendig:
 Nach 300 Mio. Umdrehungen (Diagrammbereich 3) wird die Mutter wie gewohnt nachgeschmiert. Die VSE muss nicht demontiert werden, jedoch ist die intervallverlängernde Funktion der VSE nicht mehr vorhanden.

Service und Informationen

Parametrierung (Inbetriebnahme)

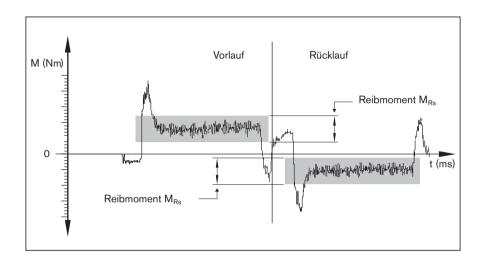
Auf dem Typenschild sind neben den Referenzangaben zur Produktion des Linearsystems zusätzlich technische Parameter zur Inbetriebnahme angegeben.

- Materialnummer
- 2 Typenbezeichnung
- 3 Baugröße
- 4 Kundeninformation
- 5 Fertigungsdatum
- 6 Fertigungsstandort
- $s_{max} = max. Verfahrbereich$ (mm)
- 8 u = Vorschubkonstante ohne Getriebe (mm/U)
- 9 v_{max} = max. Geschwindigkeit ohne Getriebe (m/s)
- **10** $a_{max} = max$. Beschleunigung ohne Getriebe (m/s²)
- 11 $M1_{max} = max$. Antriebsdrehmoment am Motorzapfen (Nm)
- 12 d = Drehrichtung des Motors um in positiver Richtung zu verfahren

cw = Clockwise / im Uhrzeigersinn ccw = Counter Clockwise / gegen den Uhrzeigersinn

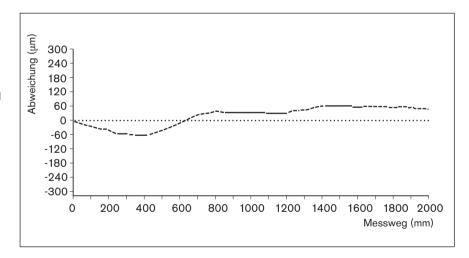
13 i = Übersetzungsverhältnis

Dokumentation


Standardprotokoll Option 01

Das Standardprotokoll enthält:

- die Bestätigung der einwandfreien mechanischen und elektrischen Funktion
- die Bestätigung der Ausführung gemäß Auftragsbestätigung
- technische Lieferinformationen gemäß Typenschild


Reibmomentmessung des kompletten Systems (für AGK) Option 02 (enthält Option 01)

Das Reibmoment wird über den gesamten Verfahrweg gemessen.

Steigungsabweichung des Kugelgewindetriebs Option 03 (enthält Option 01)

Neben der grafischen Darstellung (siehe Abbildung) wird ein Messprotokoll in Tabellenform mitgeliefert.

AOK-032

Kurzbezeichnung, Länge: AOK-032-NN-1, mm	Antrieb BASA														
		Grö	Ве			Tolera	ınz-	Standard	Schmie	erung		Vorspa	nnungsk	lasse	
	Mutter	32 x 5 x x	32 × 10 d	32 x 20	32 x 32	klasse	e	Dichtung	Grundbefettet	VSE-Links	VSE-Rechts	C1 (leicht)	C2 (mittel)	C3 (hoch)	
Ausführung Fest- und	ZEM-E	<u>ო</u>	က	က	က				<u> </u>	>	>	0	0	0	
Loslager		01	02	03	04	T5	T7	1	1	-	_	3	6	2	
~	FEM-E-S	11	_	_	-										
S. F. S.	_ ~	_	12	-	-	T5	T7	1	1	2	3	3	6	2	
3		_	_	13	_	13					3	التا			
		-	-	-	14										
	FEM-E-C	21	_	_	_										
		_	22	_	-	T5	T7	1	1	2	3	3	6	2	
		<u> -</u>	_	23	-										
Augführung nur mit	ZEM-E	-	-	-	24										
Ausführung nur mit Festlager	ZEIVI-E	06	07	08	09	T5	Т7	1	1	_	_	3	6	2	

- Markierung des Auswahlbereichs nach Entscheidung über Ausführung
- = Ausgewählte Option, die ins Bestellformular am Ende des Katalogs unter "Anfrage/Bestellung" einzutragen ist

Längenberechnung AOK

$$L = s_{max} + L_c + L_{ad}$$

$$s_{max} = s_{eff} + 2 \cdot s_e$$

Verfahrweg max.: $s_{max} = 1000 \text{ mm}$ Antrieb: BASA 32 x 10 (d_0 x P)

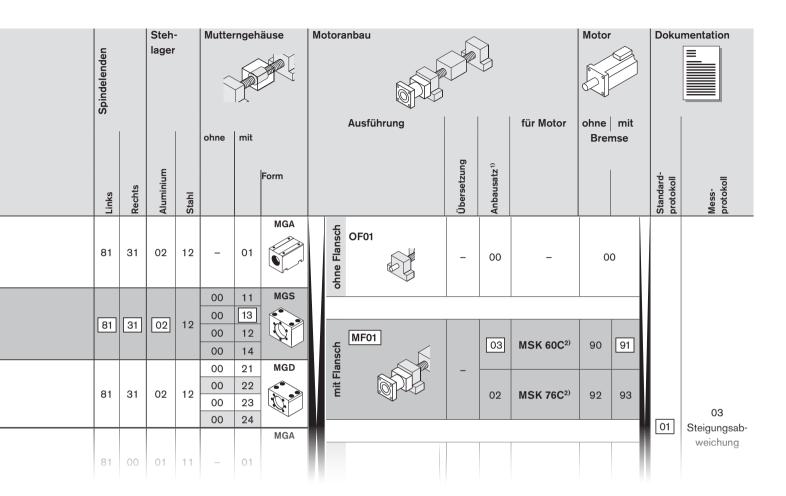
Länge Mutter/Länge Mutter mit Gehäuse: L_c = 77 mm

Längenzuschlag: L_{ad} = 128 mm

$$L = 1000 + 77 + 128$$

$$L = 1205 \text{ mm}$$

Siehe auch "Berechnungsbeispiel Antriebsauslegung"


P = Steigung (mm)

 $L_{\rm c} =$ Länge Mutter/Länge Mutter mit Gehäuse (mm)

Überlauf:

Der Überlauf muss größer als der Bremsweg sein. Als Richtwert für den Bremsweg kann der Beschleunigungsweg angenommen werden.

Längenberechnung AGK: erfolgt analog zur Antriebseinheit AOK, jedoch: L_c = Länge Mutter mit Gehäuse

Typschlüssel: AOK-032-NN-1, 1205 mm/12/T7/1/1/3/81/31/02/13/MF01/03/91/01

Bestellangaben	Option	Erläuterung
Antriebseinheit (Kurzbezeichnung)	AOK-032-NN-1, 1205 mm	Antriebseinheit offen, (AOK-032), Länge = 1205 mm
Grundform		Ausführung mit Fest- und Loslager
Kugelgewindetrieb	12	BASA 32x10 mit Flanscheinzelmutter FEM-E-S
Toleranzklasse	T7	Toleranzklasse T7
Dichtung	1	Standarddichtung
Schmierung	1	konserviert und Grundbefettung
Vorspannungsklasse C1	3	leichte Vorspannung
Form Spindelende links	81	Form 81
Form Spindelende rechts	31	Form 31
Stehlager	02	Fest- und Loslager (Alu)
Mutterngehäuse	13	MGS (32x10)
Ausführung	MF01	Flansch/Kupplung für Motoranbau nach Bild MF01
Motoranbau	03	Flansch/Kupplung für Motor MSK 060C
Motor	91	Motor MSK 060C mit Bremse
Dokumentation	01	Standardendprüfung

Für die Antriebseinheit AGK erfolgt die Erstellung des Bestellschlüssel analog zur Antriebseinheit AOK

Formular Anfrage/Bestellung

Ihren lokalen Ansprechpartner finden Sie unter:

Bestellbeispiel Rexroth - Antriebseinheiten AOK

www.boschrexroth.com/contact

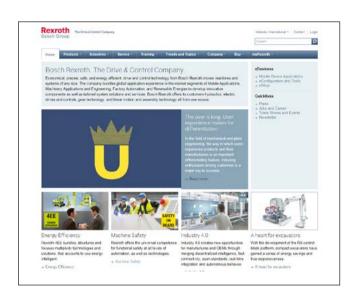
	Option	Erläuterung
ntriebseinheit (Kurzbezeichnung)	AOK-032-NN-1, 1000 mm	Antriebseinheit offen, (AOK-032), Länge = 1000 mm
Grundform		Ausführung mit Fest- und Loslager
ugelgewindetrieb	12	BASA 32x10 mit Flanscheinzelmutter FEM-E-S
oleranzklasse	T7	Toleranzklasse T7
Dichtung	1	Standarddichtung
Schmierung	1	konserviert und Grundbefettung
orspannungsklasse	3	C1 (leichte Vorspannung)
orm Spindelende links	81	Form 81
orm Spindelende rechts	31	Form 31
tehlager	02	Fest- und Loslager (Alu)
lutterngehäuse	13	MGS (32x10)
usführung	MF01	Flansch/Kupplung für Motoranbau nach Bild MF01
lotoranbau	03	Flansch/Kupplung für Motor MSK 060C
otor	91	Motor MSK 060C mit Bremse
okumentation	01	Standardendprüfung
mierung =		
umentation = _		
kzahl Abnahme von:		
ur erforderlich bei "Anbausätze für Moto skzahl Abnahme von: erkungen: ender		
kzahl Abnahme von: erkungen:	_Stück, monatlich, _	e Seite 86 jährlich, je Bestellung, oder
kzahl Abnahme von: erkungen: ender	_ Stück, monatlich, _	jährlich, je Bestellung, oder

Bestellbeispiel Rexroth - Antriebseinheiten AGK

Antriebseinheit (Kurzbezeichnung)	Option	Erläuterung
	AGK-032-NN-1, 1000 mm	Antriebseinheit AGK-032, Länge = 1000 mm geschlossene Bauform
Kugelgewindetrieb	01	BASA 32x10 mit zylindrischer Einzelmutter ZEM-E
Toleranzklasse	T5	Toleranzklasse T5
Dichtung	1	Standarddichtung
Schmierung	1	konserviert und Grundbefettung
Vorspannungsklasse	3	C1 (leichte Vorspannung)
Form Spindelende links	81	Form 81
Form Spindelende rechts	31	Form 31
Stehlager	02	Fest- und Loslager (Alu)
Mutterngehäuse	01	Mutterngehäuse ohne SPU (Spindelunterstützungen)
Montagerichtung Mutterngehäuse	MR02	oben
Ausführung	RV04	mit Riemenvorgelege rechts nach Bild RV04
Motoranbau	23	Riemenvorgelege i=1 für Motor MSK 060C
Motor	90	Motor MSK 060C ohne Bremse
Abdeckung	01	Schutzprofil und Stahlband
1. Schalter	21	REED-Sensor (lose beigelegt)
2. Schalter	21	REED-Sensor (lose beigelegt)
3. Schalter	22	HALL-Sensor, PNP-Öffner (lose beigelegt)
Dose-Stecker	17	Dose-Stecker (lose beigelegt)
Dokumentation	01	Standardendprüfung
gelgewindetrieb =		
eleranzklasse = T chtung = chmierung =		

Weiterführende Informationen

Homepage Bosch Rexroth:


http://www.boschrexroth.com

Produktinformationen Antriebseinheiten:

https://www.boschrexroth.com/de/de/produkte/produkt-gruppen/lineartechnik/linearsysteme/antriebseinheiten-mit-kugelgewindetrieben/index

Service und Informationen

Service und Informationen

Notizen

Service und Informationen

The Drive & Control Company

Bosch Rexroth AG

Ernst-Sachs-Straße 100 97424 Schweinfurt, Deutschland Tel. +49 9721 937-0

Fax +49 9721 937-275 www.boschrexroth.com

Ihre lokalen Ansprechpartner finden Sie unter:

www.boschrexroth.com/kontakt