

Rexroth IndraDyn S MSK Synchronous Motors

R911296289 Edition 09

Project Planning Manual

Title	Rexroth IndraDyn S
	MSK Synchronous Motors

Type of Documentation Project Planning Manual

Document Typecode DOK-MOTOR*-MSK******-PR09-EN-P

Internal File Reference RS-e376b79b0a6846ac00f6d325fdbe2ed7-7-en-US-11

Purpose of Documentation This documentation...

- explains the features of the product, possibilities for use, operating conditions and operational limits of MSK motors.
- contains technical data regarding available MSK motors.
- provides information regarding product selection, handling and operation

Record of Revision

Edition	Release Date	Notes
DOK-MOTOR*-MSK******-PR01-EN-P	06/2004	First edition
DOK-MOTOR*-MSK******-PR02-EN-P	10/2004	Revision / supplement
DOK-MOTOR*-MSK******-PR04-EN-P	06/2005	Revision / supplement
DOK-MOTOR*-MSK******-PR06-EN-P	12/2006	Revision / supplement fan units
DOK-MOTOR*-MSK******-PR07-EN-P	06/2008	Revision / supplement
DOK-MOTOR*-MSK******-PR08-EN-P	09/2008	Revision / supplement
DOK-MOTOR*-MSK******-PR09-EN-P	12/2010	Revision / supplement

Copyright © Bosch Rexroth AG 2010

Copying this document, giving it to others and the use or communication of the contents thereof without express authority, are forbidden. Offenders are liable for the payment of damages. All rights are reserved in the event of the grant of a patent or the registration of a utility model or design (DIN 34-1).

Validity The specified data is for product description purposes only and may not be deemed to be guaranteed unless expressly confirmed in the contract. All rights are reserved with respect to the content of this documentation and the availability of the product.

Published by Bosch Rexroth AG Bgm.-Dr.-Nebel-Str. 2 ■ 97816 Lohr a. Main, Germany Phone +49 (0)93 52 / 40-0 ■ Fax +49 (0)93 52 / 40-48 85 http://www.boschrexroth.com/ Dept. DC-IA/EDM3 (jw/mb)

Note This document has been printed on chlorine-free bleached paper.

		Page
1	Introduction	7
1.1	Introduction to the Product IndraDyn S	7
1.2	About this Documentation	7
1.2.1	Notes about Keeping	7
1.2.2	Document Structure	7
1.2.3	Additional Documentation	8
1.2.4	Standards	8
1.2.5	Foreign Systems	8
1.2.6	Your Feedback	8
2	Important Instructions on Use	9
2.1	Intended Use	
2.1.1	Introduction	9
2.1.2	Areas of Use and Application	9
2.2	Inappropriate Use	10
3	Safety Instructions for Electric Drives and Controls	11
3.1	Definitions of Terms	
3.2	General Information	12
3.2.1	Using the Safety Instructions and Passing Them on to Others	
3.2.2	Requirements for Safe Use	
3.2.3	Hazards by Improper Use	
3.3	Instructions with Regard to Specific Dangers	
3.3.1	Protection Against Contact With Electrical Parts and Housings	
3.3.2	Protective Extra-Low Voltage as Protection Against Electric Shock	
3.3.3	Protection Against Dangerous Movements	16
3.3.4	Protection Against Magnetic and Electromagnetic Fields During Operation and Mounting	18
3.3.5	Protection Against Contact With Hot Parts	18
3.3.6	Protection During Handling and Mounting	19
3.3.7	Battery Safety	19
3.3.8	Protection Against Pressurized Systems	20
3.4	Explanation of Signal Words and the Safety Alert Symbol	20
4	Technical Data	23
4.1	Characteristics	23
4.1.1	General Information	23
4.1.2	Operating Modes	24
4.1.3	Duty Cycle	24
4.1.4	Definition of Parameters	25
4.1.5	Example of a Characteristic Curve of a Motor	27
4.2	Technical Data Holding Brakes	
4.3	Technical Data Encoder for MSK Motors	30
4.4	MSK030B - Technical Data	31

4.11 MSK060B - Technical Data. 48 4.12 MSK060C - Technical Data. 50 4.13 MSK061B - Technical Data. 52 4.14 MSK061C - Technical Data. 52 4.14 MSK070C - Technical Data. 54 4.15 MSK070C - Technical Data. 57 4.16 MSK070D - Technical Data. 60 4.17 MSK070E - Technical Data. 60 4.18 MSK071C - Technical Data. 63 4.18 MSK071D - Technical Data. 64 4.19 MSK071D - Technical Data. 69 4.20 MSK071D - Technical Data. 72 4.21 MSK075C - Technical Data. 72 4.22 MSK075D - Technical Data. 75 4.22 MSK075E - Technical Data. 75 4.23 MSK076C - Technical Data. 81 4.24 MSK070A - Technical Data. 84 4.25 MSK100A - Technical Data. 86 4.26 MSK100B - Technical Data. 92 4.27 MSK100D - Technical Data. 92 4.28 MSK100D - Technical Data.			Page
4.7 MSK040C - Technical Data. 38 4.8 MSK043C - Technical Data. 40 4.9 MSK050B - Technical Data. 42 4.10 MSK050B - Technical Data. 42 4.11 MSK060C - Technical Data. 45 4.12 MSK060C - Technical Data. 60 4.13 MSK061C - Technical Data. 52 4.14 MSK070C - Technical Data. 52 4.15 MSK070C - Technical Data. 60 4.16 MSK070C - Technical Data. 60 4.17 MSK070C - Technical Data. 60 4.18 MSK071C - Technical Data. 61 4.18 MSK071C - Technical Data. 61 4.20 MSK071C - Technical Data. 72 4.21 MSK075D - Technical Data. 72 4.22 MSK075D - Technical Data. 73 4.23 MSK076C - Technical Data. 74 4.24 MSK076C - Technical Data. 74 4.25 MSK076C - Technical Data. 74 4.26 MSK100A - Technical Data. 74 4.27 MSK076C - Technical Data. <	4.5	MSK030C - Technical Data	
4.8 MSK043C - Technical Data. 40 4.9 MSK050B - Technical Data. 42 4.10 MSK050C - Technical Data. 45 4.11 MSK060C - Technical Data. 55 4.12 MSK061B - Technical Data. 52 4.13 MSK061C - Technical Data. 52 4.14 MSK061C - Technical Data. 52 4.15 MSK070C - Technical Data. 54 4.16 MSK070C - Technical Data. 60 4.17 MSK070C - Technical Data 60 4.18 MSK071C - Technical Data 63 4.19 MSK071C - Technical Data 63 4.19 MSK071C - Technical Data 72 4.20 MSK071E - Technical Data 72 4.21 MSK075C - Technical Data 78 4.22 MSK075C - Technical Data 78 4.23 MSK075E - Technical Data 78 4.24 MSK075C - Technical Data 86 4.25 MSK100A - Technical Data 89 4.26 MSK100D - Technical Data 92 4.27 MSK100D - Technical Data 92	4.6	MSK040B - Technical Data	
4.9 MSK050B - Technical Data 42 4.10 MSK060B - Technical Data 45 4.11 MSK060B - Technical Data 48 4.12 MSK060B - Technical Data 50 4.13 MSK061C - Technical Data 50 4.14 MSK061C - Technical Data 54 4.15 MSK070C - Technical Data 57 4.16 MSK070D - Technical Data 60 4.17 MSK070E - Technical Data 66 4.18 MSK071D - Technical Data 66 4.19 MSK071D - Technical Data 66 4.20 MSK071E - Technical Data 72 4.21 MSK075D - Technical Data 75 4.22 MSK075D - Technical Data 75 4.23 MSK075E - Technical Data 81 4.24 MSK076C - Technical Data 84 4.25 MSK100D - Technical Data 84 4.26 MSK100D - Technical Data 89 4.27 MSK100D - Technical Data 89 4.28 MSK100D - Technical Data 92 4.29 MSK101D - Technical Data 101 <td>4.7</td> <td>MSK040C - Technical Data</td> <td></td>	4.7	MSK040C - Technical Data	
4.10 MSK050C - Technical Data. 45 4.11 MSK060C - Technical Data. 48 4.12 MSK060C - Technical Data. 52 4.13 MSK061 - Technical Data. 52 4.14 MSK060C - Technical Data. 52 4.15 MSK070C - Technical Data. 54 4.16 MSK070D - Technical Data. 60 4.17 MSK07D - Technical Data. 60 4.18 MSK071D - Technical Data. 60 4.19 MSK071D - Technical Data. 66 4.10 MSK071D - Technical Data. 66 4.20 MSK071D - Technical Data. 72 4.21 MSK075D - Technical Data. 72 4.22 MSK075D - Technical Data. 75 4.23 MSK075E - Technical Data. 76 4.24 MSK076C - Technical Data. 84 4.25 MSK100A - Technical Data. 84 4.26 MSK100D - Technical Data. 92 4.27 MSK100D - Technical Data. 92 4.28 MSK101D - Technical Data. 96 4.30 MSK101D - Technical Data.	4.8	MSK043C - Technical Data	
4.11 MSK060B - Technical Data. 48 4.12 MSK060C - Technical Data. 50 4.13 MSK061C - Technical Data. 52 4.14 MSK070C - Technical Data. 57 4.15 MSK070D - Technical Data. 60 4.17 MSK071C - Technical Data. 60 4.18 MSK071C - Technical Data. 63 4.18 MSK071D - Technical Data. 69 4.19 MSK075C - Technical Data. 75 4.20 MSK075C - Technical Data. 72 4.21 MSK075C - Technical Data. 72 4.22 MSK075C - Technical Data. 78 4.23 MSK075C - Technical Data. 78 4.24 MSK076C - Technical Data. 81 4.25 MSK100A - Technical Data. 84 4.26 MSK100A - Technical Data. 89 4.27 MSK100C - Technical Data. 89 4.28 MSK100D - Technical Data. 92 4.29 MSK100D - Technical Data. 92 4.30 MSK101D - Technical Data. 101 4.31 MSK103D - Technical Data.	4.9	MSK050B - Technical Data	
4.12 MSK060C - Technical Data. 50 4.13 MSK061B - Technical Data. 52 4.14 MSK061C - Technical Data. 54 4.15 MSK070C - Technical Data. 57 4.16 MSK070C - Technical Data. 60 4.17 MSK070D - Technical Data. 60 4.18 MSK071C - Technical Data. 63 4.19 MSK071D - Technical Data. 63 4.19 MSK071D - Technical Data. 63 4.20 MSK071D - Technical Data. 72 4.21 MSK075D - Technical Data. 72 4.22 MSK075D - Technical Data. 78 4.23 MSK075D - Technical Data. 78 4.24 MSK076C - Technical Data 84 4.25 MSK100A - Technical Data 84 4.26 MSK100D - Technical Data 89 4.27 MSK100D - Technical Data 92 4.28 MSK100D - Technical Data 92 4.30 MSK101D - Technical Data 92 4.30 MSK101D - Technical Data 101 4.31 MSK103A - Technical Data 1	4.10	MSK050C - Technical Data	
4.13 MSK061B - Technical Data 52 4.14 MSK070C - Technical Data 54 4.15 MSK070C - Technical Data 57 4.16 MSK070E - Technical Data 60 4.17 MSK070E - Technical Data 63 4.18 MSK0710 - Technical Data 63 4.19 MSK0710 - Technical Data 69 4.20 MSK0750 - Technical Data 72 4.21 MSK0750 - Technical Data 72 4.22 MSK0750 - Technical Data 78 4.23 MSK076C - Technical Data 78 4.24 MSK076C - Technical Data 84 4.25 MSK1008 - Technical Data 84 4.26 MSK1000 - Technical Data 89 4.27 MSK1000 - Technical Data 89 4.28 MSK1000 - Technical Data 98 4.30 MSK1010 - Technical Data 98 4.31 MSK1030 - Technical Data 101 4.32 MSK1030 - Technical Data 102 4.33 MSK1030 - Technical Data 103 4.34 MSK1030 - Technical Data 107	4.11	MSK060B - Technical Data	
4.14 MSK061C - Technical Data 54 4.15 MSK070C - Technical Data 57 4.16 MSK070E - Technical Data 60 4.17 MSK071C - Technical Data 63 4.18 MSK071C - Technical Data 63 4.18 MSK071C - Technical Data 64 4.19 MSK071C - Technical Data 64 4.20 MSK071D - Technical Data 72 4.21 MSK075D - Technical Data 72 4.22 MSK075D - Technical Data 75 4.22 MSK076C - Technical Data 84 4.23 MSK076C - Technical Data 84 4.24 MSK070D - Technical Data 86 4.25 MSK1000 - Technical Data 86 4.26 MSK100D - Technical Data 92 4.27 MSK100D - Technical Data 92 4.28 MSK101C - Technical Data 92 4.30 MSK101D - Technical Data 92 4.31 MSK101D - Technical Data 101 4.32 MSK101D - Technical Data 107 4.33 MSK103D - Technical Data 107	4.12	MSK060C - Technical Data	
4.15 MSK070C - Technical Data 57 4.16 MSK070D - Technical Data 60 4.17 MSK070E - Technical Data 60 4.18 MSK071C - Technical Data 63 4.19 MSK071D - Technical Data 66 4.19 MSK071D - Technical Data 69 4.20 MSK071E - Technical Data 72 4.21 MSK075D - Technical Data 72 4.22 MSK075E - Technical Data 78 4.23 MSK076E - Technical Data 81 4.24 MSK076E - Technical Data 81 4.25 MSK100A - Technical Data 86 4.26 MSK100D - Technical Data 86 4.27 MSK100D - Technical Data 92 4.28 MSK100D - Technical Data 92 4.29 MSK101D - Technical Data 92 4.30 MSK101D - Technical Data 101 4.31 MSK103B - Technical Data 104 4.32 MSK103B - Technical Data 104 4.33 MSK131B - Technical Data 107 4.34 MSK131D - Technical Data 117	4.13	MSK061B - Technical Data	
4.16 MSK070D - Technical Data 60 4.17 MSK071C - Technical Data 63 4.18 MSK071C - Technical Data 66 4.19 MSK071E - Technical Data 69 4.20 MSK075E - Technical Data 72 4.21 MSK075E - Technical Data 75 4.22 MSK075E - Technical Data 78 4.23 MSK076E - Technical Data 81 4.24 MSK076C - Technical Data 81 4.25 MSK100A - Technical Data 84 4.26 MSK100D - Technical Data 89 4.27 MSK100D - Technical Data 89 4.28 MSK100D - Technical Data 92 4.29 MSK101D - Technical Data 92 4.20 MSK101D - Technical Data 92 4.21 MSK101D - Technical Data 101 4.31 MSK101E - Technical Data 104 4.32 MSK101D - Technical Data 101 4.33 MSK103B - Technical Data 101 4.34 MSK103B - Technical Data 101 4.35 MSK103D - Technical Data 111	4.14	MSK061C - Technical Data	
4.17 MSK070E - Technical Data 63 4.18 MSK071C - Technical Data 66 4.19 MSK071D - Technical Data 69 4.20 MSK071E - Technical Data 72 4.21 MSK075C - Technical Data 72 4.22 MSK075D - Technical Data 75 4.22 MSK075E - Technical Data 78 4.23 MSK076C - Technical Data 84 4.24 MSK0700 - Technical Data 84 4.25 MSK1000 - Technical Data 86 4.26 MSK1000 - Technical Data 92 4.27 MSK1000 - Technical Data 92 4.28 MSK1000 - Technical Data 93 4.29 MSK1010 - Technical Data 94 4.30 MSK1010 - Technical Data 101 4.31 MSK103A - Technical Data 101 4.33 MSK103B - Technical Data 107 4.34 MSK103D - Technical Data 109 4.34 MSK103A - Technical Data 101 4.35 MSK103B - Technical Data 107 5.1 Technical Data 107	4.15	MSK070C - Technical Data	
4.18 MSK071C - Technical Data 66 4.19 MSK071D - Technical Data 69 4.20 MSK071E - Technical Data 72 4.21 MSK075D - Technical Data 75 4.22 MSK075E - Technical Data 78 4.23 MSK076E - Technical Data 81 4.24 MSK076E - Technical Data 81 4.25 MSK100A - Technical Data 86 4.26 MSK100D - Technical Data 86 4.27 MSK100D - Technical Data 89 4.27 MSK100D - Technical Data 92 4.28 MSK101D - Technical Data 98 4.29 MSK101D - Technical Data 98 4.30 MSK103D - Technical Data 101 4.31 MSK103D - Technical Data 101 4.33 MSK103D - Technical Data 109 4.34 MSK103D - Technical Data 109 4.34 MSK103D - Technical Data 111 4.35 MSK103D - Technical Data 113 4.36 MSK103D - Technical Data 111 4.35 MSK030 Specifications 120	4.16	MSK070D - Technical Data	
4.19 MSK071D - Technical Data. 69 4.20 MSK071E - Technical Data. 72 4.21 MSK075C - Technical Data. 75 4.22 MSK075E - Technical Data. 78 4.23 MSK076C - Technical Data. 81 4.24 MSK076C - Technical Data 81 4.25 MSK100A - Technical Data 86 4.26 MSK100D - Technical Data 89 4.27 MSK100D - Technical Data 92 4.28 MSK100D - Technical Data 92 4.29 MSK101C - Technical Data 92 4.30 MSK101D - Technical Data 95 4.31 MSK101D - Technical Data 95 4.32 MSK101D - Technical Data 101 4.33 MSK103D - Technical Data 101 4.34 MSK103D - Technical Data 107 4.33 MSK103D - Technical Data 107 4.34 MSK103D - Technical Data 107 4.35 MSK103D - Technical Data 107 5 Specifications 111 4.35 MSK131B - Technical Data 117 <td>4.17</td> <td>MSK070E - Technical Data</td> <td></td>	4.17	MSK070E - Technical Data	
4.20 MSK071E - Technical Data. 72 4.21 MSK075C - Technical Data. 75 4.22 MSK075E - Technical Data. 81 4.23 MSK075C - Technical Data 81 4.24 MSK076C - Technical Data 84 4.25 MSK100A - Technical Data 84 4.26 MSK100B - Technical Data 86 4.27 MSK100D - Technical Data 89 4.28 MSK100D - Technical Data 92 4.29 MSK101C - Technical Data 95 4.29 MSK101D - Technical Data 95 4.30 MSK101D - Technical Data 96 4.30 MSK103D - Technical Data 101 4.31 MSK103B - Technical Data 107 4.33 MSK103D - Technical Data 107 4.34 MSK103D - Technical Data 107 4.35 MSK131B - Technical Data 107 4.34 MSK131B - Technical Data 111 4.35 MSK131B - Technical Data 117 5 Specifications. 117 5.1 Technical Design 117 <t< td=""><td>4.18</td><td>MSK071C - Technical Data</td><td></td></t<>	4.18	MSK071C - Technical Data	
4.21 MSK075C - Technical Data	4.19	MSK071D - Technical Data	
4.22 MSK075D - Technical Data	4.20	MSK071E - Technical Data	
4.23 MSK075E - Technical Data 81 4.24 MSK076C - Technical Data 84 4.25 MSK100A - Technical Data 86 4.26 MSK100B - Technical Data 89 4.27 MSK100D - Technical Data 89 4.28 MSK100D - Technical Data 92 4.29 MSK101C - Technical Data 92 4.29 MSK101D - Technical Data 98 4.30 MSK101D - Technical Data 101 4.31 MSK103A - Technical Data 104 4.32 MSK103B - Technical Data 107 4.33 MSK103B - Technical Data 109 4.34 MSK103D - Technical Data 109 4.34 MSK13B - Technical Data 111 4.35 MSK131B - Technical Data 113 4.36 MSK131D - Technical Data 113 5 Specifications. 117 5.1 Technical Design 117 5.2 MSK003 Specifications. 120 5.4 MSK040 Specifications. 120 5.5 MSK050 Specifications. 121	4.21	MSK075C - Technical Data	
4.24 MSK076C - Technical Data 84 4.25 MSK100A - Technical Data 86 4.26 MSK100B - Technical Data 89 4.27 MSK100C - Technical Data 92 4.28 MSK100D - Technical Data 92 4.29 MSK101D - Technical Data 95 4.29 MSK101D - Technical Data 98 4.30 MSK101D - Technical Data 101 4.31 MSK101E - Technical Data 104 4.32 MSK103A - Technical Data 104 4.33 MSK103B - Technical Data 107 4.33 MSK103D - Technical Data 107 4.34 MSK103D - Technical Data 109 4.34 MSK131B - Technical Data 109 4.34 MSK131D - Technical Data 111 4.35 MSK131D - Technical Data 113 4.36 MSK131D - Technical Data 113 5 Specifications 117 5.1 Technical Design 117 5.2 MSK030 Specifications 120 5.4 MSK040 Specifications 121	4.22	MSK075D - Technical Data	
4.25 MSK100A - Technical Data 86 4.26 MSK100B - Technical Data 89 4.27 MSK100C - Technical Data 92 4.28 MSK100D - Technical Data 95 4.29 MSK101C - Technical Data 98 4.30 MSK101D - Technical Data 101 4.31 MSK101E - Technical Data 104 4.32 MSK103A - Technical Data 107 4.33 MSK103B - Technical Data 107 4.34 MSK103D - Technical Data 109 4.34 MSK103D - Technical Data 109 4.34 MSK13B - Technical Data 109 4.34 MSK131B - Technical Data 111 4.35 MSK131D - Technical Data 111 4.36 MSK131D - Technical Data 111 5 Specifications 115 5 Specifications 117 5.1 Technical Design 117 5.2 MSK030 Specifications 120 5.3 MSK040 Specifications 120 5.4 MSK050 Specifications 122 5.5	4.23	MSK075E - Technical Data	
4.26 MSK100B - Technical Data 89 4.27 MSK100C - Technical Data 92 4.28 MSK100D - Technical Data 95 4.29 MSK101C - Technical Data 98 4.30 MSK101D - Technical Data 98 4.31 MSK101D - Technical Data 101 4.32 MSK103A - Technical Data 101 4.33 MSK103B - Technical Data 107 4.34 MSK103B - Technical Data 107 4.35 MSK103B - Technical Data 109 4.34 MSK131B - Technical Data 111 4.35 MSK131D - Technical Data 113 4.36 MSK131D - Technical Data 113 4.36 MSK131D - Technical Data 115 5 Specifications 117 5.1 Technical Design 117 5.2 MSK030 Specifications 119 5.4 MSK043 Specifications 120 5.5 MSK060 Specifications 121 5.6 MSK060 Specifications 122 5.7 MSK060 Specifications Fan Unit Axial 123	4.24	MSK076C - Technical Data	
4.27 MSK100C - Technical Data 92 4.28 MSK100D - Technical Data 95 4.29 MSK101C - Technical Data 98 4.30 MSK101D - Technical Data 101 4.31 MSK101D - Technical Data 101 4.32 MSK103A - Technical Data 107 4.33 MSK103A - Technical Data 107 4.34 MSK103D - Technical Data 109 4.34 MSK131D - Technical Data 111 4.35 MSK131B - Technical Data 111 4.36 MSK131D - Technical Data 113 4.36 MSK131D - Technical Data 115 5 Specifications 117 5.1 Technical Design 117 5.2 MSK040 Specifications 119 5.4 MSK043 Specifications 120 5.5 MSK050 Specifications 121 5.6 MSK060 Specifications 122 5.7 MSK060 Specifications 122 5.7 MSK060 Specifications Fan Unit Axial 123 5.8 MSK060 Specifications Fan Unit Axial 124	4.25	MSK100A - Technical Data	
4.28 MSK100D - Technical Data	4.26	MSK100B - Technical Data	
4.29 MSK101C - Technical Data. 98 4.30 MSK101D - Technical Data. 101 4.31 MSK101E - Technical Data. 104 4.32 MSK103A - Technical Data 107 4.33 MSK103B - Technical Data 107 4.34 MSK103B - Technical Data 109 4.34 MSK103D - Technical Data 109 4.34 MSK131B - Technical Data 111 4.35 MSK131B - Technical Data 113 4.36 MSK131D - Technical Data 113 4.36 MSK131D - Technical Data 115 5 Specifications 117 5.1 Technical Design 117 5.2 MSK030 Specifications 118 5.3 MSK040 Specifications 119 5.4 MSK043 Specifications 120 5.5 MSK060 Specifications 122 5.7 MSK060 Specifications 122 5.7 MSK060 Specifications Fan Unit Axial 123 5.8 MSK060 Specifications Fan Unit Axial 124 5.9 MSK061 Specifications Fan Unit Axial 12	4.27	MSK100C - Technical Data	
4.30 MSK101D - Technical Data. 101 4.31 MSK101E - Technical Data. 104 4.32 MSK103A - Technical Data. 107 4.33 MSK103B - Technical Data 107 4.34 MSK103D - Technical Data 109 4.34 MSK103D - Technical Data 109 4.34 MSK131B - Technical Data 111 4.35 MSK131B - Technical Data 113 4.36 MSK131D - Technical Data 113 4.36 MSK131D - Technical Data 115 5 Specifications 117 5.1 Technical Design 117 5.2 MSK030 Specifications 118 5.3 MSK040 Specifications 119 5.4 MSK043 Specifications 120 5.5 MSK050 Specifications 121 5.6 MSK060 Specifications 122 5.7 MSK060 Specifications Fan Unit Axial 123 5.8 MSK060 Specifications Fan Unit Axial 123 5.10 MSK061 Specifications Fan Unit Axial 126 5.11 MSK061 Specifications Fan Unit Axial <td>4.28</td> <td>MSK100D - Technical Data</td> <td></td>	4.28	MSK100D - Technical Data	
4.31 MSK101E - Technical Data 104 4.32 MSK103A - Technical Data 107 4.33 MSK103B - Technical Data 109 4.34 MSK103D - Technical Data 109 4.34 MSK103D - Technical Data 109 4.34 MSK103D - Technical Data 111 4.35 MSK131B - Technical Data 113 4.36 MSK131D - Technical Data 115 5 Specifications 117 5.1 Technical Design 117 5.2 MSK030 Specifications 118 5.3 MSK040 Specifications 119 5.4 MSK043 Specifications 120 5.5 MSK050 Specifications 121 5.6 MSK060 Specifications 122 5.7 MSK060 Specifications Fan Unit Axial 123 5.8 MSK060 Specifications Fan Unit Axial 123 5.8 MSK061 Specifications Fan Unit Axial 124 5.9 MSK061 Specifications Fan Unit Axial 126 5.10 MSK061 Specifications Fan Unit Axial 126 5.11 MSK061 Specifications	4.29	MSK101C - Technical Data	
4.32 MSK103A - Technical Data 107 4.33 MSK103B - Technical Data 109 4.34 MSK103D - Technical Data 111 4.35 MSK131B - Technical Data 111 4.36 MSK131D - Technical Data 113 4.36 MSK131D - Technical Data 115 5 Specifications 117 5.1 Technical Design 117 5.2 MSK030 Specifications 118 5.3 MSK040 Specifications 119 5.4 MSK050 Specifications 120 5.5 MSK060 Specifications 121 5.6 MSK060 Specifications 122 5.7 MSK060 Specifications Fan Unit Axial 123 5.8 MSK060 Specifications Fan Unit Radial 124 5.9 MSK061 Specifications Fan Unit Radial 126 5.10 MSK061 Specifications Fan Unit Axial 126 5.11 MSK061 Specifications Fan Unit Radial 127	4.30	MSK101D - Technical Data	101
4.33 MSK103B - Technical Data 109 4.34 MSK103D - Technical Data 111 4.35 MSK131B - Technical Data 113 4.36 MSK131D - Technical Data 113 4.36 MSK131D - Technical Data 115 5 Specifications 117 5.1 Technical Design 117 5.2 MSK030 Specifications 118 5.3 MSK040 Specifications 119 5.4 MSK043 Specifications 120 5.5 MSK050 Specifications 121 5.6 MSK060 Specifications 122 5.7 MSK060 Specifications Fan Unit Axial 123 5.8 MSK060 Specifications Fan Unit Axial 124 5.9 MSK061 Specifications 125 5.10 MSK061 Specifications Fan Unit Axial 126 5.11 MSK061 Specifications Fan Unit Axial 126 5.11 MSK061 Specifications Fan Unit Axial 126	4.31	MSK101E - Technical Data	
4.34 MSK103D - Technical Data 111 4.35 MSK131B - Technical Data 113 4.36 MSK131D - Technical Data 113 5 Specifications 115 5 Specifications 117 5.1 Technical Design 117 5.2 MSK030 Specifications 118 5.3 MSK040 Specifications 119 5.4 MSK043 Specifications 120 5.5 MSK050 Specifications 121 5.6 MSK060 Specifications 122 5.7 MSK060 Specifications Fan Unit Axial 123 5.8 MSK060 Specifications 122 5.7 MSK061 Specifications 124 5.9 MSK061 Specifications 125 5.10 MSK061 Specifications 125 5.10 MSK061 Specifications Fan Unit Axial 126 5.11 MSK061 Specifications Fan Unit Radial 127	4.32	MSK103A - Technical Data	107
4.35 MSK131B - Technical Data. 113 4.36 MSK131D - Technical Data. 115 5 Specifications 117 5.1 Technical Design 117 5.2 MSK030 Specifications 118 5.3 MSK040 Specifications 119 5.4 MSK043 Specifications 120 5.5 MSK050 Specifications 121 5.6 MSK060 Specifications 122 5.7 MSK060 Specifications Fan Unit Axial. 123 5.8 MSK060 Specifications 124 5.9 MSK061 Specifications Fan Unit Radial. 124 5.1 MSK061 Specifications Fan Unit Axial. 125 5.10 MSK061 Specifications Fan Unit Axial. 126 5.11 MSK061 Specifications Fan Unit Axial. 126	4.33	MSK103B - Technical Data	
4.36 MSK131D - Technical Data. 115 5 Specifications. 117 5.1 Technical Design 117 5.2 MSK030 Specifications. 118 5.3 MSK040 Specifications. 119 5.4 MSK043 Specifications. 120 5.5 MSK050 Specifications. 121 5.6 MSK060 Specifications Fan Unit Axial. 122 5.7 MSK060 Specifications Fan Unit Axial. 123 5.8 MSK060 Specifications Fan Unit Axial. 124 5.9 MSK061 Specifications Fan Unit Axial. 125 5.10 MSK061 Specifications Fan Unit Axial. 126 5.11 MSK061 Specifications Fan Unit Axial. 126	4.34	MSK103D - Technical Data	111
5Specifications1175.1Technical Design1175.2MSK030 Specifications1185.3MSK040 Specifications1195.4MSK043 Specifications1205.5MSK050 Specifications1215.6MSK060 Specifications1225.7MSK060 Specifications Fan Unit Axial1235.8MSK060 Specifications1245.9MSK061 Specifications1255.10MSK061 Specifications Fan Unit Axial1265.11MSK061 Specifications Fan Unit Radial127	4.35	MSK131B - Technical Data	113
5.1Technical Design1175.2MSK030 Specifications1185.3MSK040 Specifications1195.4MSK043 Specifications1205.5MSK050 Specifications1215.6MSK060 Specifications1225.7MSK060 Specifications Fan Unit Axial1235.8MSK060 Specifications1245.9MSK061 Specifications1255.10MSK061 Specifications Fan Unit Axial1265.11MSK061 Specifications Fan Unit Radial127	4.36	MSK131D - Technical Data	
5.2MSK030 Specifications1185.3MSK040 Specifications1195.4MSK043 Specifications1205.5MSK050 Specifications1215.6MSK060 Specifications1225.7MSK060 Specifications Fan Unit Axial1235.8MSK060 Specifications Fan Unit Radial1245.9MSK061 Specifications Fan Unit Axial1255.10MSK061 Specifications Fan Unit Axial1265.11MSK061 Specifications Fan Unit Radial127	5	Specifications	
5.3MSK040 Specifications1195.4MSK043 Specifications1205.5MSK050 Specifications1215.6MSK060 Specifications1225.7MSK060 Specifications Fan Unit Axial1235.8MSK060 Specifications Fan Unit Radial1245.9MSK061 Specifications1255.10MSK061 Specifications Fan Unit Axial1265.11MSK061 Specifications Fan Unit Radial127	5.1	Technical Design	117
5.4MSK043 Specifications.1205.5MSK050 Specifications.1215.6MSK060 Specifications.1225.7MSK060 Specifications Fan Unit Axial.1235.8MSK060 Specifications Fan Unit Radial.1245.9MSK061 Specifications.1255.10MSK061 Specifications Fan Unit Axial.1265.11MSK061 Specifications Fan Unit Radial.127	5.2	MSK030 Specifications	
5.5MSK050 Specifications.1215.6MSK060 Specifications.1225.7MSK060 Specifications Fan Unit Axial.1235.8MSK060 Specifications Fan Unit Radial.1245.9MSK061 Specifications.1255.10MSK061 Specifications Fan Unit Axial.1265.11MSK061 Specifications Fan Unit Radial.127	5.3	MSK040 Specifications	
5.6MSK060 Specifications	5.4	MSK043 Specifications	
5.7MSK060 Specifications Fan Unit Axial.1235.8MSK060 Specifications Fan Unit Radial.1245.9MSK061 Specifications.1255.10MSK061 Specifications Fan Unit Axial.1265.11MSK061 Specifications Fan Unit Radial.127	5.5	MSK050 Specifications	
5.7MSK060 Specifications Fan Unit Axial.1235.8MSK060 Specifications Fan Unit Radial.1245.9MSK061 Specifications.1255.10MSK061 Specifications Fan Unit Axial.1265.11MSK061 Specifications Fan Unit Radial.127	5.6	•	
5.8MSK060 Specifications Fan Unit Radial.1245.9MSK061 Specifications.1255.10MSK061 Specifications Fan Unit Axial.1265.11MSK061 Specifications Fan Unit Radial.127	5.7	•	
5.9MSK061 Specifications	5.8	•	
5.10MSK061 Specifications Fan Unit Axial	5.9	•	
5.11 MSK061 Specifications Fan Unit Radial	5.10	MSK061 Specifications Fan Unit Axial	126
5.12 MSK070 Specifications	5.11	MSK061 Specifications Fan Unit Radial	
	5.12	MSK070 Specifications	

7.3

Table of Contents

		Page
5.13	MSK070 Specifications Fan Unit Axial	129
5.14	MSK070 Specifications Fan Unit Radial	
5.15	MSK071 Specifications	131
5.16	MSK071 Specifications Liquid Cooling	132
5.17	MSK071 Specifications Fan Unit Axial	133
5.18	MSK071 Specifications Fan Unit Radial	
5.19	MSK075 Specifications	135
5.20	MSK075 Specifications Liquid Cooling	
5.21	MSK075 Specifications Fan Unit Axial	137
5.22	MSK075 Specifications Fan Unit Radial	138
5.23	MSK076 Specifications	139
5.24	MSK076 Specifications Fan Unit Axial	140
5.25	MSK076 Specifications Fan Unit Radial	141
5.26	MSK100 Specifications	
5.27	MSK100 Specifications Fan Unit Axial	
5.28	MSK100 Specifications Fan Unit Radial	
5.29	MSK101 Specifications	
5.30	MSK101 Specifications Liquid Cooling	
5.31	MSK101 Specifications Fan Unit Axial	
5.32	MSK101 Specifications Fan Unit Radial	
5.33	MSK103 Specifications	
5.34	MSK131 Specifications	
5.35	MSK131 Specifications Fan Unit Axial	151
6	Type Codes	153
6.1	MSK Type Code - Structure and Description	
6.2	MSK030 Type Code	
6.3	MSK040 Type Code	
6.4	MSK043 Type Code	
6.5	MSK050 Type Code	
6.6	MSK060 Type Code	
6.7	MSK061 Type Code	
6.8	MSK070 Type Code	
6.9	MSK071 Type Code	
6.10	MSK075 Type Code	
6.11	MSK076 Type Code	
6.12	MSK100 Type Code	
6.13	MSK101 Type Code	
6.14	MSK103 Type Code	
6.15	MSK131 Type Code	
7	Fan Units for MSK Motors	
. 7.1	Field of Application of Fan Units	
7.2	Technical Data of Fan Units	

		Page
7.4	Fan Units Selection Table	
7.5	Fan Units Electrical Connection	
7.5.1	Connection 1-phase	
7.5.2	Connection 3-phase	
7.6	Ordering Fan Units	
7.7	Assemble Fan Units	
7.7.1	Assembly Fan Unit Axial, Flange dimension 116/140	
7.7.2	Assembly Fan Unit Axial, Flange Dimension 192	
7.7.3	Assembly Fan Unit Axial, Flange Dimension 116/140	
7.7.4	Assembly Fan Unit Radial, Flange Dimension 192	
7.7.5	Assembly Fan Unit Axial, Flange Dimension 260	
8	Connection Technique	
8.1	Electric Connection Technique Overview	
8.2	Flange Socket RLS1100	
8.3	Flange Socket RLS1200	
8.4	Flange Socket RLS1300	
8.5	Flange Sockets RGS1000 / RGS1003	
8.6	Connecting Cables	
8.6.1	Ready-Made Connection Cables	
8.7	Connection Technique Fan Units	
8.8	Connection Technique Liquid Cooling	
9	Operating Conditions and Application Notes	209
9 9.1	Operating Conditions and Application Notes.	
9.1	Ambient Conditions	
9.1 9.1.1	Ambient Conditions	
9.1 9.1.1 9.1.2	Ambient Conditions Setup Elevation and Ambient Temperature Humidity / Temperature	209 209 209 209 210
9.1 9.1.1 9.1.2 9.1.3	Ambient Conditions Setup Elevation and Ambient Temperature. Humidity / Temperature Vibration	209 209 209 209 210 210
9.1 9.1.1 9.1.2 9.1.3 9.1.4	Ambient Conditions Setup Elevation and Ambient Temperature Humidity / Temperature Vibration Shock	209 209 209 210 210 210 212
9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.2	Ambient Conditions Setup Elevation and Ambient Temperature. Humidity / Temperature Vibration. Shock. Degree of Protection. Design and Installation Positions. Compatibility with Foreign Materials.	209 209 209 210 210 210 212 212 213 213
9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.2 9.3	Ambient Conditions Setup Elevation and Ambient Temperature. Humidity / Temperature Vibration. Shock. Degree of Protection. Design and Installation Positions. Compatibility with Foreign Materials. Motor Varnish.	209 209 209 210 210 210 212 212 213 213 213 214
9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.2 9.3 9.4 9.5 9.6	Ambient Conditions Setup Elevation and Ambient Temperature. Humidity / Temperature Vibration. Shock. Degree of Protection. Design and Installation Positions. Compatibility with Foreign Materials. Motor Varnish. Output Shaft.	209 209 209 210 210 210 212 213 213 213 214 215
9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.2 9.3 9.4 9.5	Ambient Conditions Setup Elevation and Ambient Temperature. Humidity / Temperature Vibration. Shock. Degree of Protection. Design and Installation Positions. Compatibility with Foreign Materials. Motor Varnish. Output Shaft. Plain Shaft.	209 209 209 210 210 210 212 213 213 213 213 214 215 215
9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.2 9.3 9.4 9.5 9.6	Ambient Conditions Setup Elevation and Ambient Temperature. Humidity / Temperature Vibration Shock. Degree of Protection. Design and Installation Positions. Compatibility with Foreign Materials. Motor Varnish. Output Shaft. Plain Shaft. Output Shaft with Keyway.	209 209 209 210 210 212 212 213 213 213 214 214 215 215 215
9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.2 9.3 9.4 9.5 9.6 9.6.1 9.6.2 9.6.3	Ambient Conditions Setup Elevation and Ambient Temperature. Humidity / Temperature Vibration. Shock. Degree of Protection. Design and Installation Positions. Compatibility with Foreign Materials. Motor Varnish. Output Shaft. Plain Shaft. Output Shaft with Keyway. Output Shaft with Shaft Sealing Ring.	209 209 209 210 210 210 212 213 213 213 213 214 214 215 215 215 215
9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.2 9.3 9.4 9.5 9.6 9.6.1 9.6.2	Ambient Conditions Setup Elevation and Ambient Temperature. Humidity / Temperature Vibration Shock. Degree of Protection. Design and Installation Positions. Compatibility with Foreign Materials. Motor Varnish. Output Shaft. Plain Shaft. Output Shaft with Keyway. Output Shaft with Shaft Sealing Ring. Bearing and Shaft Load.	209 209 209 210 210 212 213 213 213 213 214 215 215 215 215 215 215 215
9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.2 9.3 9.4 9.5 9.6 9.6.1 9.6.2 9.6.3 9.7 9.7.1	Ambient Conditions Setup Elevation and Ambient Temperature. Humidity / Temperature Vibration. Shock. Degree of Protection. Design and Installation Positions. Compatibility with Foreign Materials. Motor Varnish. Output Shaft. Plain Shaft. Output Shaft with Keyway. Output Shaft with Shaft Sealing Ring. Bearing and Shaft Load. Radial Load, Axial Load.	209 209 209 210 210 212 213 213 213 214 214 215 215 215 215 215 215 215 215 215 217
9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.2 9.3 9.4 9.5 9.6 9.6.1 9.6.2 9.6.3 9.7 9.7.1 9.7.2	Ambient Conditions Setup Elevation and Ambient Temperature. Humidity / Temperature Vibration. Shock. Degree of Protection. Design and Installation Positions. Compatibility with Foreign Materials. Motor Varnish. Output Shaft. Plain Shaft. Output Shaft with Keyway. Output Shaft with Shaft Sealing Ring. Bearing and Shaft Load. Radial Load, Axial Load. Shaft Load MSK Motors.	209 209 209 210 210 212 213 213 213 213 214 214 215 215 215 215 215 215 215 217 217 217
9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.2 9.3 9.4 9.5 9.6 9.6.1 9.6.2 9.6.3 9.7 9.7.1	Ambient Conditions Setup Elevation and Ambient Temperature. Humidity / Temperature Vibration. Shock. Degree of Protection. Design and Installation Positions. Compatibility with Foreign Materials. Motor Varnish. Output Shaft. Plain Shaft. Output Shaft with Keyway. Output Shaft with Shaft Sealing Ring. Bearing and Shaft Load. Radial Load, Axial Load. Shaft Load MSK Motors. Bearing Lifetime.	209 209 209 210 210 212 213 213 213 213 214 214 215 215 215 215 215 215 215 215 215 215
9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.2 9.3 9.4 9.5 9.6 9.6.1 9.6.2 9.6.3 9.7 9.7.1 9.7.2	Ambient Conditions Setup Elevation and Ambient Temperature. Humidity / Temperature Vibration Shock. Degree of Protection. Design and Installation Positions. Compatibility with Foreign Materials. Motor Varnish. Output Shaft Plain Shaft. Output Shaft with Keyway. Output Shaft with Shaft Sealing Ring. Bearing and Shaft Load. Radial Load, Axial Load. Shaft Load MSK Motors. Bearing Lifetime. Attachment of Drive Elements.	209 209 209 210 210 212 213 213 213 214 214 215 215 215 215 215 215 215 215 217 217 217 219 223
9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.2 9.3 9.4 9.5 9.6 9.6.1 9.6.2 9.6.3 9.7 9.7.1 9.7.2 9.8	Ambient Conditions Setup Elevation and Ambient Temperature Humidity / Temperature Vibration Shock Degree of Protection Design and Installation Positions Compatibility with Foreign Materials Motor Varnish Output Shaft Plain Shaft Output Shaft with Keyway Output Shaft with Shaft Sealing Ring. Bearing and Shaft Load Radial Load, Axial Load Shaft Load MSK Motors Bearing Lifetime Attachment of Drive Elements Holding Brakes	209 209 209 210 210 210 212 213 213 213 213 213 214 215 215 215 215 215 215 215 215 217 217 217 217 219 223 224
9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.2 9.3 9.4 9.5 9.6 9.6.1 9.6.2 9.6.3 9.7 9.7.1 9.7.1 9.7.2 9.8 9.9	Ambient Conditions Setup Elevation and Ambient Temperature. Humidity / Temperature Vibration Shock. Degree of Protection. Design and Installation Positions. Compatibility with Foreign Materials. Motor Varnish. Output Shaft Plain Shaft. Output Shaft with Keyway. Output Shaft with Shaft Sealing Ring. Bearing and Shaft Load. Radial Load, Axial Load. Shaft Load MSK Motors. Bearing Lifetime. Attachment of Drive Elements.	209 209 209 210 210 210 212 213 213 213 213 213 214 215 215 215 215 215 215 215 215 217 217 217 217 219 223 224

		Page
9.10.3	Layout of Holding Brakes	
9.10.4	Holding Brake–Commissioning and Maintenance Instructions	
9.11	Acceptances and Authorizations	
9.11.1	CE Symbol	
9.11.2	cURus-Symbol	
9.12	Motor Cooling System	
9.12.1	Natural Convection	
9.12.2	Fan Units	
9.12.3	Liquid cooling	
	General Information	
	Operating Pressure	
	Coolants	
	Coolant Additives	
	Used Materials	
	Coolant Inlet Temperature	
9.13	Motor Temperature Monitoring	
9.13.1	General Information	
9.13.2	Temperature Sensor	
9.14	Operation on External Controllers	
10	Transport and Storage	
10.1	Notes about Transport	
10.2	Notes about Storage	
10.2.1	Storage Conditions	
10.2.2	•	
11	Delivery Status, Identification, Handling	245
11.1	State of Delivery	
11.1.1	General Information	
11.1.2	Inspection at the Factory	
11.1.3	Test Realized by the Customer	
11.2	Identification	
11.2.1	Scope of delivery	
11.2.2		
11.3	Handling	
12	Installation	
12.1	Safety	
12.2	Skilled Personnel	
12.3	Mechanical Attachment	
12.3.1	Flange Assembly	
12.3.2	Preparation	
12.3.3	Motor Assembly	
12.4	Electrical Connection – Connecting the Motor	
12.4.1	General Information	

		Page
12.4.2	Attaching the Connectors	
12.4.3	Adjusting the Output Direction	
13	Commissioning, Operation and Maintenance	
13.1	Commissioning	
13.2	Operation	
13.3	Deactivation	
13.4	Maintenance	
13.4.1	General Information	
13.4.2	Cleaning	
13.4.3	Bearings	
13.4.4	Connecting Cables	
13.5	Notice at Malfunctions	
13.6	Dismantling	
14	Environmental Protection and Disposal	
14.1	Environmental Protection	
14.2	Disposal	
15	Appendix	
15.1	List of standards	
15.2	Declaration of Conformity	
16	Service and Support	
	Index	

Introduction

1 Introduction

1.1 Introduction to the Product IndraDyn S

IndraDyn S servo motors set new standards. Many innovations in synchronous servomotors combine past experiences and the most up-to-date motor technology to create a new standard.

IndraDyn S servo motors are characterized by

- dynamics
- a compact construction
- a high torque density
- an extremely high degree of precision due to new optical encoder systems

1.2 About this Documentation

1.2.1 Notes about Keeping

13 I	This documentation must be kept by the user during the whole pe- riod of use and lifetime of the product and be passed on in case of sale.
	Save these instructions.

1.2.2 Document Structure

The present documentation contains safety regulations, technical data, and operating instructions for IndraDyn S motors. The individual chapters can be subdivided into the following focal points:

Chapter	Title	Contents	
1	Introduction	General Information	
2	Important Instructions on Use	Coloty	
3	Notes Regarding Safety	Safety	
4	Technical Data		
5	Specifications		
6	Type Codes	Product Description	
7	Fan Units for MSK Motors	(for planners and designers)	
8	Connection Technique		
9	Operating Conditions and Application Notes		
10	Transport and Storage	Deseties	
11	Delivery status, identification, handling	Practice	
12	Installation	(for operating and maintenance person- nel)	
13	Commissioning, Operation and Maintenance		
14	Environmental Protection and Disposal		
15	Appendix		
16	Service & Support	General Information	
	Index		

Fig. 1-1: Document structure

Introduction

1.2.3 Additional Documentation

As the case may be, you might need additional documentation referring to the used devices to project the drive systems of the MSK motor unit. Rexroth provides all product documentation in the Bosch Rexroth media directory in a PDF-format.

http://www.boschrexroth.com/various/utilities/mediadirectory/index.jsp

1.2.4 Standards

This documentation refers to German, European and international technical standards. Documents and sheets on standards are subject to copyright protection and may not be passed on to third parties by Rexroth. If need be, please contact the authorized sales outlets or, in Germany, directly:

BEUTH Verlag GmbH

Burggrafenstrasse 6

10787 Berlin, Germany

Phone +49-(0)30-26 01-22 60, Fax +49-(0)30-26 01-12 60

Internet: http://www.din.de/beuth

Email: postmaster@beuth.de

1.2.5 Foreign Systems

Documentation for external systems which are connected to Rexroth components are not included in the scope of delivery and must be ordered directly from the respective manufacturers.

1.2.6 Your Feedback

Your experiences are an essential part of the process of improving both the product and the documentation.

Please send your remarks to:

Bosch Rexroth AG

Dept. DC-IA/EDM3

Buergermeister-Dr.-Nebel-Strasse 2

97816 Lohr

Email: dokusupport@boschrexroth.de

Important Instructions on Use

2 Important Instructions on Use

2.1 Intended Use

2.1.1 Introduction

Rexroth products are developed and manufactured according to the state of the art. Before they are delivered, they are inspected to ensure that they operate safely.

Personal injury and property damage coused by inappropriate use of the products!

The products must only be used as intended. If they are not used as intended, situations may arise that result in personal injuries or damage to property.

Rexroth, as the manufacturer, does not provide any warranty, assume any liability, or pay any damages for damage caused by products not being used as intended. Any risks resulting from the products not being used as intended are the sole responsibility of the user.

Before using Rexroth products, the following condition precedent must be fulfilled so as to ensure that they are used as intended:

- Everyone who in any way whatsoever handles one of our products must read and understand the corresponding notes regarding safety and regarding the intended use.
- If the products are hardware, they must be kept in their original state, i.e. no constructional modifications must be made. Software products must not be decompiled; their source codes must not be modified.
- Damaged or improperly working products must not be installed or put into operation.
- It must be ensured that the products are installed according to the regulations specified in the documentation.

2.1.2 Areas of Use and Application

Rexroth IndraDyn A series asynchronous motors ApplicationsMSK are designed to be used as rotary main and servo drive motors. The following are typical fields of application:

- Machine tools
- Printing and paper-processing machines,
- Packaging and Food-processing machines,
- Metal-forming machines
- Robotics

Device types with different driving powers and different interfaces are available for an application-specific use of the motors.

Controlling and monitoring of the motors may require connection of additional sensors and actuators.

Important Instructions on Use

R

MSKThe motors must only be used with the accessories specified in this documentation. Components that are not explicitly mentioned must neither be attached nor connected. The same is true for cables and lines.

The operation must only be carried out in the explicitly mentioned configurations and combinations of the component and with the software and firmware specified in the corresponding functional description.

Any connected drive control device must be programmed before startup in order to ensure that the motor executes the functions specifically to the particular application.

MSKThe motors may only be operated under the assembly, mounting and installation conditions, in the normal position, and under the environmental conditions (temperature, degree of protection, humidity, EMC etc.) specified in this documentation.

2.2 Inappropriate Use

Any use MSKof motors outside of the fields of application mentioned above or under operating conditions and technical data other than those specified in this documentation is considered as "non-intended use".

MSK motors may not be used if . . .

- They are subject to operating conditions which do not comply with the ambient conditions described above. For example, they must not be operated under water, under extreme temperature fluctuations or extreme maximum temperatures.
- the intended application is not explicitly released by Bosch Rexroth. Please make absolutely sure that the instructions given in the general safety notes are also complied with!

3 Safety Instructions for Electric Drives and Controls

3.1 Definitions of Terms

Application Documentation	Application documentation comprises the entire documentation used to inform the user of the product about the use and safety-relevant features for config- uring, integrating, installing, mounting, commissioning, operating, maintaining, repairing and decommissioning the product. The following terms are also used for this kind of documentation: User Guide, Operation Manual, Commissioning Manual, Instruction Manual, Project Planning Manual, Application Manual, etc.
Component	A component is a combination of elements with a specified function, which are part of a piece of equipment, device or system. Components of the electric drive and control system are, for example, supply units, drive controllers, mains choke, mains filter, motors, cables, etc.
Control System	A control system comprises several interconnected control components placed on the market as a single functional unit.
Device	A device is a finished product with a defined function, intended for users and placed on the market as an individual piece of merchandise.
Electrical Equipment	Electrical equipment encompasses all devices used to generate, convert, trans- mit, distribute or apply electrical energy, such as electric motors, transformers, switching devices, cables, lines, power-consuming devices, circuit board as- semblies, plug-in units, control cabinets, etc.
Electric Drive System	An electric drive system comprises all components from mains supply to motor shaft; this includes, for example, electric motor(s), motor encoder(s), supply units and drive controllers, as well as auxiliary and additional components, such as mains filter, mains choke and the corresponding lines and cables.
Installation	An installation consists of several devices or systems interconnected for a de- fined purpose and on a defined site which, however, are not intended to be placed on the market as a single functional unit.
Machine	A machine is the entirety of interconnected parts or units at least one of which is movable. Thus, a machine consists of the appropriate machine drive ele- ments, as well as control and power circuits, which have been assembled for a specific application. A machine is, for example, intended for processing, treatment, movement or packaging of a material. The term "machine" also cov- ers a combination of machines which are arranged and controlled in such a way that they function as a unified whole.
Manufacturer	The manufacturer is an individual or legal entity bearing responsibility for the design and manufacture of a product which is placed on the market in the in- dividual's or legal entity's name. The manufacturer can use finished products, finished parts or finished elements, or contract out work to subcontractors. However, the manufacturer must always have overall control and possess the required authority to take responsibility for the product.
Product	Examples of a product: Device, component, part, system, software, firmware, among other things.
Project Planning Manual	A project planning manual is part of the application documentation used to support the sizing and planning of systems, machines or installations.
Qualified Persons	In terms of this application documentation, qualified persons are those persons who are familiar with the installation, mounting, commissioning and operation of the components of the electric drive and control system, as well as with the hazards this implies, and who possess the qualifications their work requires. To comply with these qualifications, it is necessary, among other things,

- 1) to be trained, instructed or authorized to switch electric circuits and devices safely on and off, to ground them and to mark them
- 2) to be trained or instructed to maintain and use adequate safety equipment
- 3) to attend a course of instruction in first aid
- **User** A user is a person installing, commissioning or using a product which has been placed on the market.

3.2 General Information

3.2.1 Using the Safety Instructions and Passing Them on to Others

Do not attempt to install and operate the components of the electric drive and control system without first reading all documentation provided with the product. Read and understand these safety instructions and all user documentation prior to working with these components. If you do not have the user documentation for the components, contact your responsible Rexroth sales partner. Ask for these documents to be sent immediately to the person or persons responsible for the safe operation of the components.

If the component is resold, rented and/or passed on to others in any other form, these safety instructions must be delivered with the component in the official language of the user's country.

Improper use of these components, failure to follow the safety instructions in this document or tampering with the product, including disabling of safety devices, could result in property damage, injury, electric shock or even death.

3.2.2 Requirements for Safe Use

Read the following instructions before initial commissioning of the components of the electric drive and control system in order to eliminate the risk of injury and/or property damage. You must follow these safety instructions.

- Rexroth is not liable for damages resulting from failure to observe the safety instructions.
- Read the operating, maintenance and safety instructions in your language before commissioning. If you find that you cannot completely understand the application documentation in the available language, please ask your supplier to clarify.
- Proper and correct transport, storage, mounting and installation, as well as care in operation and maintenance, are prerequisites for optimal and safe operation of the component.
- Only qualified persons may work with components of the electric drive and control system or within its proximity.
- Only use accessories and spare parts approved by Rexroth.
- Follow the safety regulations and requirements of the country in which the components of the electric drive and control system are operated.
- Only use the components of the electric drive and control system in the manner that is defined as appropriate. See chapter "Appropriate Use".
- The ambient and operating conditions given in the available application documentation must be observed.
- Applications for functional safety are only allowed if clearly and explicitly specified in the application documentation "Integrated Safety Technology". If this is not the case, they are excluded. Functional safety is a safety

concept in which measures of risk reduction for personal safety depend on electrical, electronic or programmable control systems.

 The information given in the application documentation with regard to the use of the delivered components contains only examples of applications and suggestions.

The machine and installation manufacturers must

- make sure that the delivered components are suited for their individual application and check the information given in this application documentation with regard to the use of the components,
- make sure that their individual application complies with the applicable safety regulations and standards and carry out the required measures, modifications and complements.
- Commissioning of the delivered components is only allowed once it is sure that the machine or installation in which the components are installed complies with the national regulations, safety specifications and standards of the application.
- Operation is only allowed if the national EMC regulations for the application are met.
- The instructions for installation in accordance with EMC requirements can be found in the section on EMC in the respective application documentation.

The machine or installation manufacturer is responsible for compliance with the limit values as prescribed in the national regulations.

• The technical data, connection and installation conditions of the components are specified in the respective application documentations and must be followed at all times.

National regulations which the user must take into account

- European countries: In accordance with European EN standards
- United States of America (USA):
 - National Electrical Code (NEC)
 - National Electrical Manufacturers Association (NEMA), as well as local engineering regulations
 - Regulations of the National Fire Protection Association (NFPA)
- Canada: Canadian Standards Association (CSA)
- Other countries:
 - International Organization for Standardization (ISO)
 - International Electrotechnical Commission (IEC)

3.2.3 Hazards by Improper Use

- High electrical voltage and high working current! Danger to life or serious injury by electric shock!
- High electrical voltage by incorrect connection! Danger to life or injury by electric shock!
- Dangerous movements! Danger to life, serious injury or property damage by unintended motor movements!
- Health hazard for persons with heart pacemakers, metal implants and hearing aids in proximity to electric drive systems!
- Risk of burns by hot housing surfaces!

- Risk of injury by improper handling! Injury by crushing, shearing, cutting, hitting!
- Risk of injury by improper handling of batteries!
- Risk of injury by improper handling of pressurized lines!

3.3 Instructions with Regard to Specific Dangers

3.3.1 Protection Against Contact With Electrical Parts and Housings

This section concerns components of the electric drive and control system with voltages of **more than 50 volts**.

Contact with parts conducting voltages above 50 volts can cause personal danger and electric shock. When operating components of the electric drive and control system, it is unavoidable that some parts of these components conduct dangerous voltage.

High electrical voltage! Danger to life, risk of injury by electric shock or serious injury!

- Only qualified persons are allowed to operate, maintain and/or repair the components of the electric drive and control system.
- Follow the general installation and safety regulations when working on power installations.
- Before switching on, the equipment grounding conductor must have been permanently connected to all electric components in accordance with the connection diagram.
- Even for brief measurements or tests, operation is only allowed if the equipment grounding conductor has been permanently connected to the points of the components provided for this purpose.
- Before accessing electrical parts with voltage potentials higher than 50 V, you must disconnect electric components from the mains or from the power supply unit. Secure the electric component from reconnection.
- With electric components, observe the following aspects:

Always wait **30 minutes** after switching off power to allow live capacitors to discharge before accessing an electric component. Measure the electrical voltage of live parts before beginning to work to make sure that the equipment is safe to touch.

- Install the covers and guards provided for this purpose before switching on.
- Never touch electrical connection points of the components while power is turned on.
- Do not remove or plug in connectors when the component has been powered.
- Under specific conditions, electric drive systems can be operated at mains protected by residual-current-operated circuit-breakers sensitive to universal current (RCDs/RCMs).
- Secure built-in devices from penetrating foreign objects and water, as well as from direct contact, by providing an external housing, for example a control cabinet.

High housing voltage and high leakage current! Danger to life, risk of injury by electric shock!

• Before switching on and before commissioning, ground or connect the components of the electric drive and control system to the equipment grounding conductor at the grounding points.

- Connect the equipment grounding conductor of the components of the electric drive and control system permanently to the main power supply at all times. The leakage current is greater than 3.5 mA.
- Establish an equipment grounding connection with a minimum cross section according to the table below. With an outer conductor cross section smaller than 10 mm² (8 AWG), the alternative connection of two equipment grounding conductors is allowed, each having the same cross section as the outer conductors.

Cross section outer con- ductor	Minimum cross section equipment grounding conductor Leakage current ≥ 3.5 mA	
	1 equipment grounding conductor	2 equipment grounding con- ductors
1.5 mm ² (16 AWG)		2 × 1.5 mm ² (16 AWG)
2.5 mm ² (14 AWG)		2 × 2.5 mm ² (14 AWG)
4 mm ² (12 AWG)	10 mm² (8 AWG)	2 × 4 mm ² (12 AWG)
6 mm² (10 AWG)		2 × 6 mm ² (10 AWG)
10 mm ² (8 AWG)		-
16 mm ² (6 AWG)		-
25 mm² (4 AWG)	16 mm² (6 AWG)	-
35 mm ² (2 AWG)		-
50 mm ² (1/0 AWG)	25 mm ² (4 AWG)	-
70 mm ² (2/0 AWG)	35 mm² (2 AWG)	-

Fig.3-1: Minimum Cross Section of the Equipment Grounding Connection

3.3.2 Protective Extra-Low Voltage as Protection Against Electric Shock

Protective extra-low voltage is used to allow connecting devices with basic insulation to extra-low voltage circuits.

On components of an electric drive and control system provided by Rexroth, all connections and terminals with voltages between 5 and 50 volts are PELV ("Protective Extra-Low Voltage") systems. It is allowed to connect devices equipped with basic insulation (such as programming devices, PCs, notebooks, display units) to these connections.

Danger to life, risk of injury by electric shock! High electrical voltage by incorrect connection!

If extra-low voltage circuits of devices containing voltages and circuits of more than 50 volts (e.g., the mains connection) are connected to Rexroth products, the connected extra-low voltage circuits must comply with the requirements for PELV ("Protective Extra-Low Voltage").

3.3.3 Protection Against Dangerous Movements

Dangerous movements can be caused by faulty control of connected motors. Some common examples are:

- Improper or wrong wiring or cable connection
- Operator errors
- Wrong input of parameters before commissioning
- Malfunction of sensors and encoders
- Defective components
- Software or firmware errors

These errors can occur immediately after equipment is switched on or even after an unspecified time of trouble-free operation.

The monitoring functions in the components of the electric drive and control system will normally be sufficient to avoid malfunction in the connected drives. Regarding personal safety, especially the danger of injury and/or property damage, this alone cannot be relied upon to ensure complete safety. Until the integrated monitoring functions become effective, it must be assumed in any case that faulty drive movements will occur. The extent of faulty drive movements depends upon the type of control and the state of operation.

Dangerous movements! Danger to life, risk of injury, serious injury or property damage!

A **risk assessment** must be prepared for the installation or machine, with its specific conditions, in which the components of the electric drive and control system are installed.

As a result of the risk assessment, the user must provide for monitoring functions and higher-level measures on the installation side for personal safety. The safety regulations applicable to the installation or machine must be taken into consideration. Unintended machine movements or other malfunctions are possible if safety devices are disabled, bypassed or not activated.

To avoid accidents, injury and/or property damage:

- Keep free and clear of the machine's range of motion and moving machine parts. Prevent personnel from accidentally entering the machine's range of motion by using, for example:
 - Safety fences
 - Safety guards
 - Protective coverings
 - Light barriers
- Make sure the safety fences and protective coverings are strong enough to resist maximum possible kinetic energy.
- Mount emergency stopping switches in the immediate reach of the operator. Before commissioning, verify that the emergency stopping equipment works. Do not operate the machine if the emergency stopping switch is not working.
- Prevent unintended start-up. Isolate the drive power connection by means of OFF switches/OFF buttons or use a safe starting lockout.
- Make sure that the drives are brought to safe standstill before accessing or entering the danger zone.
- Additionally secure vertical axes against falling or dropping after switching off the motor power by, for example,
 - mechanically securing the vertical axes,
 - adding an external braking/arrester/clamping mechanism or
 - ensuring sufficient counterbalancing of the vertical axes.

- The standard equipment **motor holding brake** or an external holding brake controlled by the drive controller is **not sufficient to guarantee personal safety**!
- Disconnect electrical power to the components of the electric drive and control system using the master switch and secure them from reconnection ("lock out") for:
 - Maintenance and repair work
 - Cleaning of equipment
 - Long periods of discontinued equipment use
- Prevent the operation of high-frequency, remote control and radio equipment near components of the electric drive and control system and their supply leads. If the use of these devices cannot be avoided, check the machine or installation, at initial commissioning of the electric drive and control system, for possible malfunctions when operating such high-frequency, remote control and radio equipment in its possible positions of normal use. It might possibly be necessary to perform a special electromagnetic compatibility (EMC) test.

3.3.4 Protection Against Magnetic and Electromagnetic Fields During Operation and Mounting

Magnetic and electromagnetic fields generated by current-carrying conductors or permanent magnets of electric motors represent a serious danger to persons with heart pacemakers, metal implants and hearing aids.

Health hazard for persons with heart pacemakers, metal implants and hearing aids in proximity to electric components!

- Persons with heart pacemakers and metal implants are not allowed to enter the following areas:
 - Areas in which components of the electric drive and control systems are mounted, commissioned and operated.
 - Areas in which parts of motors with permanent magnets are stored, repaired or mounted.
- If it is necessary for somebody with a heart pacemaker to enter such an area, a doctor must be consulted prior to doing so. The noise immunity of implanted heart pacemakers differs so greatly that no general rules can be given.
- Those with metal implants or metal pieces, as well as with hearing aids, must consult a doctor before they enter the areas described above.

3.3.5 Protection Against Contact With Hot Parts

Hot surfaces of components of the electric drive and control system. Risk of burns!

- Do not touch hot surfaces of, for example, braking resistors, heat sinks, supply units and drive controllers, motors, windings and laminated cores!
- According to the operating conditions, temperatures of the surfaces can be higher than 60 °C (140 °F) during or after operation.
- Before touching motors after having switched them off, let them cool down for a sufficient period of time. Cooling down can require up to 140 minutes! The time required for cooling down is approximately five times the thermal time constant specified in the technical data.

- After switching chokes, supply units and drive controllers off, wait **15 minutes** to allow them to cool down before touching them.
- Wear safety gloves or do not work at hot surfaces.
- For certain applications, and in accordance with the respective safety regulations, the manufacturer of the machine or installation must take measures to avoid injuries caused by burns in the final application. These measures can be, for example: Warnings at the machine or installation, guards (shieldings or barriers) or safety instructions in the application documentation.

3.3.6 Protection During Handling and Mounting

Risk of injury by improper handling! Injury by crushing, shearing, cutting, hitting!

- Observe the relevant statutory regulations of accident prevention.
- Use suitable equipment for mounting and transport.
- Avoid jamming and crushing by appropriate measures.
- Always use suitable tools. Use special tools if specified.
- Use lifting equipment and tools in the correct manner.
- Use suitable protective equipment (hard hat, safety goggles, safety shoes, safety gloves, for example).
- Do not stand under hanging loads.
- Immediately clean up any spilled liquids from the floor due to the risk of falling!

3.3.7 Battery Safety

Batteries consist of active chemicals in a solid housing. Therefore, improper handling can cause injury or property damage.

Risk of injury by improper handling!

- Do not attempt to reactivate low batteries by heating or other methods (risk of explosion and cauterization).
- Do not attempt to recharge the batteries as this may cause leakage or explosion.
- Do not throw batteries into open flames.
- Do not dismantle batteries.
- When replacing the battery/batteries, do not damage the electrical parts installed in the devices.
- Only use the battery types specified for the product.
- Environmental protection and disposal! The batteries contained in the product are considered dangerous goods during land, air, and sea transport (risk of explosion) in the sense of the legal regulations. Dispose of used batteries separately from other waste. Observe the national regulations of your country.

3.3.8 Protection Against Pressurized Systems

According to the information given in the Project Planning Manuals, motors and components cooled with liquids and compressed air can be partially supplied with externally fed, pressurized media, such as compressed air, hydraulics oil, cooling liquids and cooling lubricants. Improper handling of the connected supply systems, supply lines or connections can cause injuries or property damage.

Risk of injury by improper handling of pressurized lines!

- Do not attempt to disconnect, open or cut pressurized lines (risk of explosion).
- Observe the respective manufacturer's operating instructions.
- Before dismounting lines, relieve pressure and empty medium.
- Use suitable protective equipment (safety goggles, safety shoes, safety gloves, for example).
- Immediately clean up any spilled liquids from the floor due to the risk of falling!

Environmental protection and disposal! The agents (e.g., fluids) used to operate the product might not be environmentally friendly. Dispose of agents harmful to the environment separately from other waste. Observe the national regulations of your country.

3.4 Explanation of Signal Words and the Safety Alert Symbol

The Safety Instructions in the available application documentation contain specific signal words (DANGER, WARNING, CAUTION or NOTICE) and, where required, a safety alert symbol (in accordance with ANSI Z535.6-2006).

The signal word is meant to draw the reader's attention to the safety instruction and identifies the hazard severity.

The safety alert symbol (a triangle with an exclamation point), which precedes the signal words DANGER, WARNING and CAUTION, is used to alert the reader to personal injury hazards.

In case of non-compliance with this safety instruction, death or serious injury **will** occur.

In case of non-compliance with this safety instruction, death or serious injury **could** occur.

In case of non-compliance with this safety instruction, minor or moderate injury could occur.

NOTICE

In case of non-compliance with this safety instruction, property damage could occur.

4 Technical Data

4.1 Characteristics

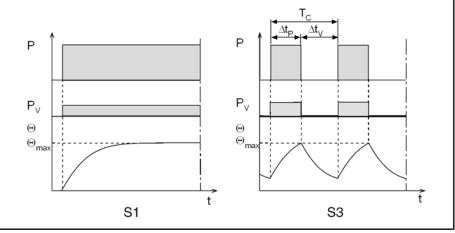
4.1.1 General Information

The speed-torque curves and technical data are specified for two different temperature models.

- 60 K temperature increase on the housing and
- 100 K temperature increase on the winding
- When selecting the technical data, observe the temperatures specified! The appropriate parameters are marked with **100 K** and **60 K**, respectively.

60K data 60K data for IndraDyn S motors are specified for the following conditions:

- Ambient temperature 40 °C
- Setup isolated
- Maximum temperature increase on the housing ΔT = 60 K
- In case of motors with the optional holding brake, the data are always specified for motors with a holding brake.
- Motors with radial shaft sealing ring


100K data 100K data for IndraDyn S motors are specified for the following conditions:

- Ambient temperature 40 °C
- Structure **not** insulated (attachment to steel flange, L×W×H = 450×30×350 or 120×40×100)
- Maximum temperature increase on the winding $\Delta T = 100 \text{ K}$
- In case of motors with the optional holding brake, the data are always specified for motors **with** a holding brake.
- Motors with radial shaft sealing ring

The machine accuracy can be negatively affected by an increased linear expansion during 100 K operation. We recommend using 60 K data for the planning of systems.

4.1.2 **Operating Modes**

IndraDyn S motors are documented according to the inspection criteria and measurement procedures of EN 60034-1. The specified characteristic curves correspond to operating mode S1 or S3.

Load

Ρ

-	
PV	Electric losses
Θ	Temperature
Omax	Highest temperature (motor housing)
t	Time
тс	Cycle time
ΔtP	Operating time with constant load
ΔtV	Idling time
Fig.4-1:	Operating modes according to EN 60034-1:1998

4.1.3 **Duty Cycle**

Operating mode S3 is supplemented by the specification of the duty cycle (DC) in %. The duty cycle is calculated as follows:

$$ED = \frac{\Delta t_{P}}{T_{C}} \cdot 100\%$$

DC Relative duty cycle in % ΔtP

Operating time with constant load

Fig.4-2: Relative duty cycle

The values specified in the documentation have been determined on the basis of the following parameters:

Cycle time: 10 min

Duty cycle (DC): 25 %

4.1.4 Definition of Parameters

Designation	Symbol	Unit	Description
UL files	-	-	UL File number
Continuous torque at standstill, 60K	M _{0_60}	Nm	Continuous torque that can be applied to the motor output shaft at a speed of $n \ge 0.1$ Hz.
Continuous current at standstill, 60K	M _{0_60}	Nm	Continuous torque that can be applied to the motor output shaft at a speed of n \ge 0.1 Hz.
Continuous torque at standstill, 100K	M _{0_100}	Nm	Continuous torque that can be applied to the motor output shaft at a speed of n \ge 0.1 Hz.
Continuous current at standstill, 100K	I _{0_100(rms)}	A	Phase current (crest value) of the motor $M_{0_{-100}}$ required for the continuous torque at standstill at a speed of n \ge 0.1 Hz.
Continuous torque at standstill surface	M _{0_S}	Nm	Continuous torque that can be applied to the motor output shaft at a speed of n \ge 0.1 Hz.
Continuous current at standstill surface	I _{0_S(rms)}	A	Phase current (crest value) of the motor M_{0_s} required for the continuous torque at standstill at a speed of n \ge 0.1 Hz.
Continuous torque at standstill liquid	M _{0_L}	Nm	Continuous torque that can be applied to the motor output shaft at a speed of n \ge 0.1 Hz.
Continuous current at standstill liquid	I _{0_L(rms)}	А	Phase current (crest value) of the motor $M_{0_{-}}$ required for the continuous torque at standstill at a speed of n \ge 0.1 Hz.
Maximum torque	M _{max}	M _{max}	Maximum torque that can be applied for about 400 ms at maximum current I_{max} . The maximum torque that can be attained depends on the drive control device used. Only the specified maximum torque in the selection lists is binding.
Maximum current	I _{max(rms)}	A	Maximum, briefly permissible phase current of the motor winding without adverse affect on the permanent magnet circuit of the motor.
Torque constant at 20° C	K _{M_N}	Nm/A	Ration of created torque to motor phase current at a motor temperature of 20°C. Valid up to approx. i = $2x I_{0_{-60}}$.
Voltage constant at 20°C	K _{EMK_1000}	V/min ⁻¹	Root-mean-square value of the induced motor voltage at a motor temper- ature of 20 °C and 1,000 revolutions per minute.
Winding resistance at 20°C	R ₁₂	ohms	Measured winding resistance between two strands.
Winding inductivity	L ₁₂	mH	Measured winding resistance between two strands.
Discharge capacity	C _{dis}	nF	Capacitiy of short-circuited power connections U, V, W against the motor housing.
Number of pole pairs	р	-	Quantity of pole pairs of the motor.
Moment of inertia of the rotor	J _{rot}	kgm ²	Moment of inertia of the rotor without the optional holding brake. Moment of inertia of holding brake must eventually be added.
Thermal time constant	T _{th}	min	Time of the temperature increase to 63 % of the maximum temperature of the motor housing with the motor loaded with the permissible S1 continuous torque. The thermal time constant is defined by the cooling type used. $ \begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & &$

Designation	Symbol	Unit	Description
Maximum speed	n _{max}	min ⁻¹	Maximum permissible speed of the motor.
Sound pressure level	L _P	dB(A)	Determined values for 1 m distance from motor to measuring point.
Mass	m	kg	Motor mass, value in brackets for motors with holding brakes.
Ambient temperature in operation	T _{amb}	°C	0 40 °C
Degree of protection	-	-	IP protection class acc. to EN 60529
Insulation class according to DIN EN 60034-1	-	-	Insulation class according to DIN EN 60034-1
Holding torque	M ₄	Nm	Transferable holding torque of the holding brake.
Rated voltage (+/-10 %)	U _N	v	Input voltage of the holding brakechapter 9.10.1 "Holding brake electrically- releasing" on page 226
Rated current	I _N	А	Current consumption of the holding brake.
Connection time	t ₁	ms	Period until the holding brake is closed.
Disconnection time	t ₂	ms	Period until the holding brake is opened.
Moment of inertia of the brake	J _{Br}	kgm ²	Moment of inertia of holding brake must be added to determine the total moment of inertia to moment of inertia of the motor.

MSK071D-0450 M [Nm] 70,0 (432)60,0 50,0 40.0 S3(25% ED) 30,0 S1_{liquid} 20,0 S1(60K) 10,0 0,0 0 1000 2000 3000 4000 5000 6000 7000 n [min-1] S1 (60K) Continuous operation curve S1 of the motor (according to EN 60034-1; 1998), natural convection S1 (100K) Continuous operation curve S1 of the motor (according to EN 60034-1; 1998), natural convection S1 (surface) Continuous operation curve S1 of the motor (according to EN 60034-1; 1998), surface cooling. S3 (25 % DC) Intermittent operation curve at 25 % DC of the motor (according to EN 60034-1; 1998) and max. cycle time of 10 min. Characteristic voltage limit curves. When a speed at the safe commu-1 - 4 tation limit is reached, the voltage limit curve limits the available maximum torque Mmax. The maximum motor speed is determined by the DC link voltage used. There are separate characteristic curves for the various drive control devices in connection with the power supply unit and the supply voltage used. 1 Mmax for IndraDrive, controlled feed, 3 × AC 400 V 2 Mmax for IndraDrive, uncontrolled feed, 3 × AC 480 V 3 Mmax for IndraDrive, uncontrolled feed, 3 × AC 440 V (4) Mmax for IndraDrive, uncontrolled feed, 3 × AC 400 V Fig.4-3: Example of a characteristic curve of a motor

4.1.5 Example of a Characteristic Curve of a Motor

4.2 Technical Data Holding Brakes

Туре	Holding tor- que	Rated voltage	Rated current	Connection time	Disconnection time	Moment of in- ertia of the holding brake	
	M ₄	U _N	I _N	t ₁	t ₂	J _{rot}	
	Nm	v	A	ms	ms	kg*m²	
MSK0300-000-00-00-001	1.0	24	0.31	14	28	0.000010	
MSK0400-000-00-00-001	4.0	24	0.50	25	35	0.000023	
MSK043C-000-00-00-001	4.0	24	0.50	25	35	0.000023	
MSK0500-000-00-00-001	5.0	24	0.65	13	43	0.000107	
MSK0600-000-00-00-001	10.0	24	0.75	25	40	0.000059	
MSK0610-000-00-001	10.0	24	0.75	25	40	0.000059	
MSK0700-000-00-00-001	23.0	24	0.79	130	180	0.000300	
MSK0710-000-00-00-001	23.0	24	0.79	130	180	0.000300	
MSK0710-000-00-00-002	30.0	24	0.94	35	125	0.001060	
MSK0750-000-00-00-001	23.0	24	0.79	130	180	0.000300	
MSK0750-000-00-00-002	30.0	24	0.94	35	125	0.001060	
MSK076C-000-00-00-001	11.0	24	0.71	13	30	0.000360	
MSK100A-000-00-00-001	22.0	24	0.02	15	115	0.001242	
MSK100B-000-00-00-001	32.0	24	0.93	15	115	0.001242	
MSK100B-000-00-00-002							
MSK100C-000-00-00-002	70.0	24	1.29	53	97	0.003000	
MSK100D-000-00-00-002							
MSK101C-000-00-00-002							
MSK101D-000-00-00-002	70.0	24	1.29	53	97	0.003000	
MSK101D-000-00-00-002							
MSK101D-000-00-00-003	100.0	0.1	4.40	00	450	0.005750	
MSK101E-000-00-00-003	120.0	24	1.46	80	150	0.005750	
MSK103A-000-00-00-001				10			
MSK103B-000-00-00-001	33.0	24	0.94	40	270	0.001060	
MSK103D-000-00-00-002	60.0	24	1.04	60	300	0.001470	
MSK131B-000-00-00-001							
MSK131D-000-00-00-001	100.0	24	2.00	70	190	0.005300	
MSK131D-000-00-00-002	240.0	24	1.87	30	300	0.018800	
MSK131D-□□□-□□-□□-□□2 L Holding brake acc. to type code							

Fig.4-4:

Holding brakes - Technical data (optional)

4.3 Technical Data Encoder for MSK Motors

Data Sheet Encoder

Designation	Symbol	Unit	S1	M1	S2	M2	S3	M3
Interface			Hiperface		EnDat 2.1		Hiperface	
Encoder design			Singleturn absolute	Multiturn absolute	Singleturn absolute	Multiturn absolute	Singleturn absolute	Multiturn absolute
Distinguishable revolutions			1	4,096	1	4,096	1	4,096
Signal periods			128		2,048		16	
System accuracy		Angular seconds	±120		±20		±520	
Output signal			1Vss					
Maximum encoder speed		min⁻¹	12,000 9,000		15,000		12,000	
Max. current consumption	I _{Encoder}	mA	60		150	250	5	0
Power supply voltage	VCC _{Encoder}	V	712		12 3,614		712	

Fig.4-5: Technical data MSK encoder

Calculate position resolution

The actual **position resolution** can be done for each encoder type according to the following calcuation example.

Calculation example: "Position resolution for encoder M1"

	numbe ⇒ from doc	e: uishable revolutions er of lines sumentation about controller: er resolution ¹⁾	4,096 128 13 bit			
	Position resolution = number of lines x resolution of encoder x distinguishable re tions					
	Position rea	solution = 128 × 2 ¹³ × 4,096 = 4	,294,967,296 Information			
	¹⁾ Encoder	resolution depends on the conr	ected controller.			
Encoder singleturn S1, S2, S3	These encoders permit absolute, indirect position recording within one me- chanical rotation. The encoders replace separate incremental encoders on the motor.					
	R B	After a power failure or af always at first be moved to	ter the first POWER ON, the axis must its home position.			
		Exception: Applications in vin one mechanical rotation	which the maximum working path is with- of the motor.			
Encoder multiturn absolute M1, M2, M3						

4.4 MSK030B - Technical Data

Designation	Symbol	Unit	MSK030B-0900-NN
UL Files (UL)			E335445
Continuous torque at standstill 60 K	M _{0_60}	Nm	0.4
Continuous current at standstill 60 K	I _{0_60(rms)}	А	1.5
Continuous torque at standstill 100 K	M _{0_100}	Nm	0.4
Continuous current at standstill 100 K	I _{0_100(rms)}	А	1.7
Maximum torque	M _{max}	Nm	1.8
Maximum current	I _{max(rms)}	А	6.8
Torque constant at 20 °C	K _{M_N}	Nm/A	0.29
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	17.9
Winding resistance at 20 °C	R ₁₂	ohms	7.20
Winding inductivity	L ₁₂	mH	8.100
Discharge capacity of the component	C _{dis}	nF	0.7
Number of pole pairs	р	-	3
Moment of inertia of the rotor	J _{rot}	kg*m²	0.00001
Thermal time constant	T _{th}	min	19.0
Maximum speed	n _{max}	min ⁻¹	9,000
Sound pressure level	L _P	dB[A]	<75
Weight ²⁾	m	kg	1.3 (1.6)
Ambient temperature in operation	T _{amb}	°C	0 40
Type of protection according to IEC 60529		-	IP65
Insulation class according to DIN EN 60034-1		-	155
			Latest amendment: 2008-01-29

1) 2) Manufacturing tolerance ±5 %

(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...)

Fig.4-6:

Technical Data

Characteristic Motor Curves

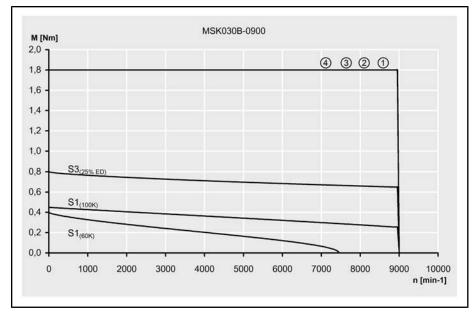


Fig.4-7: Characteristic curves MSK030B-0900

4.5 MSK030C - Technical Data

Designation	Symbol	Unit	MSK030C-0900-NN
UL Files (UL)			E335445
Continuous torque at standstill 60 K	M _{0_60}	Nm	0.8
Continuous current at standstill 60 K	I _{0_60(rms)}	А	1.5
Continuous torque at standstill 100 K	M _{0_100}	Nm	0.9
Continuous current at standstill 100 K	I _{0_100(rms)}	А	1.7
Maximum torque	M _{max}	Nm	4.0
Maximum current	I _{max(rms)}	А	6.8
Torque constant at 20 °C	K _{M_N}	Nm/A	0.58
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	35.6
Winding resistance at 20 °C	R ₁₂	ohms	9.80
Winding inductivity	L ₁₂	mH	14.100
Discharge capacity of the component	C _{dis}	nF	1.3
Number of pole pairs	р	-	3
Moment of inertia of the rotor	J _{rot}	kg*m²	0.00003
Thermal time constant	T _{th}	min	12.0
Maximum speed	n _{max}	min⁻¹	9000
Sound pressure level	L _P	dB[A]	<75
Weight ²⁾	m	kg	1.9 (2.1)
Ambient temperature in operation	T _{amb}	°C	0 40
Type of protection according to IEC 60529		-	IP65
Insulation class according to DIN EN 60034-1		-	155
			Latest amendment: 2009-06-22

1) 2) Manufacturing tolerance ±5 %

(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...)

Fig.4-8:

Technical Data

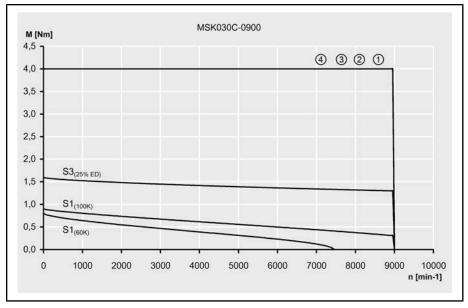
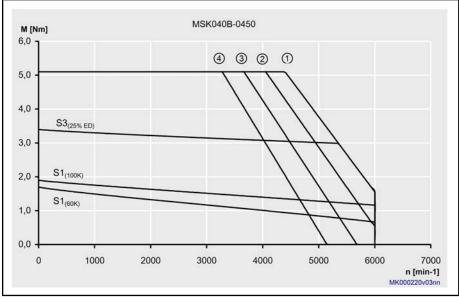


Fig.4-9: Characteristic curves MSK030C-0900

4.6 MSK040B - Technical Data


Designation	Symbol	Unit	MSK040B-0450-NN	MSK040B-0600-NN	
UL Files (UL)			E335445		
Continuous torque at standstill 60 K	M _{0_60}	Nm	1.	7	
Continuous current at standstill 60 K	I _{0_60(rms)}	А	1.5	2.0	
Continuous torque at standstill 100 K	M _{0_100}	Nm	1.	9	
Continuous current at standstill 100 K	I _{0_100(rms)}	А	1.7	2.2	
Maximum torque	M_{max}	Nm	5.	1	
Maximum current	I _{max(rms)}	А	6.0	8.0	
Torque constant at 20 °C	K _{M_N}	Nm/A	1.26	0.92	
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	77.8	58.5	
Winding resistance at 20 °C	R ₁₂	ohms	14.70	8.40	
Winding inductivity	L ₁₂	mH	64.700	35.400	
Discharge capacity of the compo- nent	C _{dis}	nF	1.3	1.5	
Number of pole pairs	р	-	4		
Moment of inertia of the rotor	J _{rot}	kg*m²	0.00	010	
Thermal time constant	T _{th}	min	13	.0	
Maximum speed	n _{max}	min⁻¹	6,000	7,500	
Sound pressure level	L _P	dB[A]	<7	5	
Weight ²⁾	m	kg	2.8 (3.1)	
Ambient temperature in operation	T _{amb}	°C	0	40	
Type of protection according to IEC 60529		-	IP65		
Insulation class according to DIN EN 60034-1		-	15	5	
				Latest amendment: 2010-01	

1) 2) Manufacturing tolerance ±5 %

(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...)

Fig.4-10:

MSK - Technical data (standard cooling)

Fig.4-11: Characteristic curves MSK040B-0450

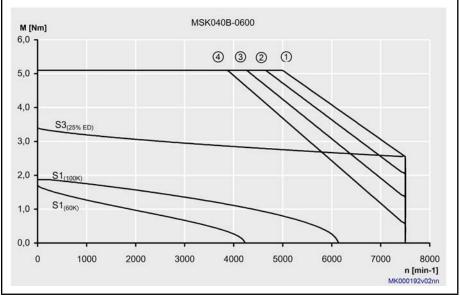
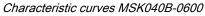



Fig.4-12:

4.7 MSK040C - Technical Data

Designation	Symbol	Unit	MSK040C-0450-NN	MSK040C-0600-NN	
UL Files (UL)			E335445		
Continuous torque at standstill 60 K	M _{0_60}	Nm	2	.7	
Continuous current at standstill 60 K	I _{0_60(rms)}	А	2.4	3.1	
Continuous torque at standstill 100 K	M _{0_100}	Nm	3	.1	
Continuous current at standstill 100 K	I _{0_100(rms)}	A	3.1	4.7	
Maximum torque	M _{max}	Nm	8	.1	
Maximum current	I _{max(rms)}	А	9.6	12.4	
Torque constant at 20 °C	K _{M_N}	Nm/A	1.25	0.95	
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	76.7	58.2	
Winding resistance at 20 °C	R ₁₂	ohms	7.40	3.90	
Winding inductivity	L ₁₂	mH	37.900	21.300	
Discharge capacity of the component	C _{dis}	nF	2	.0	
Number of pole pairs	р	-	2	4	
Moment of inertia of the rotor	J _{rot}	kg*m²	0.00	0014	
Thermal time constant	T _{th}	min	16	5.0	
Maximum speed	n _{max}	min⁻¹	6,000	7,500	
Sound pressure level	L _P	dB[A]	<7	75	
Weight ²⁾	m	kg	3.6	(3.9)	
Ambient temperature in operation	T _{amb}	°C	0	. 40	
Type of protection according to IEC 60529		-	IP65		
Insulation class according to DIN EN 60034-1		-	15	55	
	:	!		Latest amendment: 2008-10	

1) 2) Manufacturing tolerance ±5 %

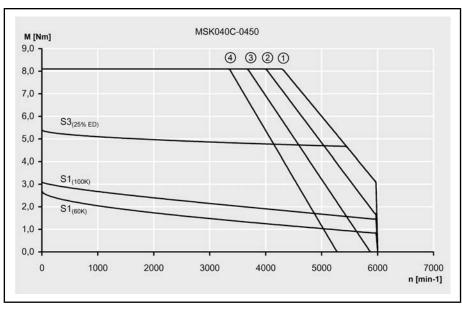
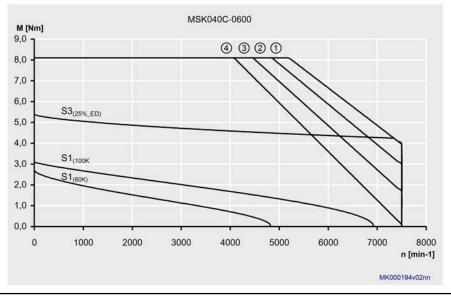

(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...)

Fig.4-13:


MSK - Technical data (standard cooling)

Characteristic Motor Curves

Technical Data

Characteristic curves MSK040C-0600

4.8 MSK043C - Technical Data

Designation	Symbol	Unit	MSK043C-0600-NN
UL Files (UL)			
Continuous torque at standstill 60 K	M _{0_60}	Nm	2.7
Continuous current at standstill 60 K	I _{0_60(rms)}	А	3.6
Continuous torque at standstill 100 K	M _{0_100}	Nm	3.1
Continuous current at standstill 100 K	I _{0_100(rms)}	А	4.3
Maximum torque	M _{max}	Nm	12.5
Maximum current	I _{max(rms)}	А	18.5
Torque constant at 20 °C	K _{M_N}	Nm/A	0.78
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	48.0
Winding resistance at 20 °C	R ₁₂	ohms	2.75
Winding inductivity	L ₁₂	mH	13.400
Discharge capacity of the compo- nent	C _{dis}	nF	2.1
Number of pole pairs	р	-	4
Moment of inertia of the rotor	J _{rot}	kg*m²	0.00008
Thermal time constant	T _{th}	min	17.0
Maximum speed	n _{max}	min⁻¹	7,500
Sound pressure level	L _P	dB[A]	< 75
Weight ²⁾	m	kg	3.6 (3.9)
Ambient temperature in operation	T _{amb}	°C	0 40
Type of protection according to IEC 60529		-	IP 65
Insulation class according to DIN EN 60034-1		-	155
			Latest amendment: 2008-12-18

1) 2) Manufacturing tolerance ±5 %

(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...)

Fig.4-16:

MSK - Technical data

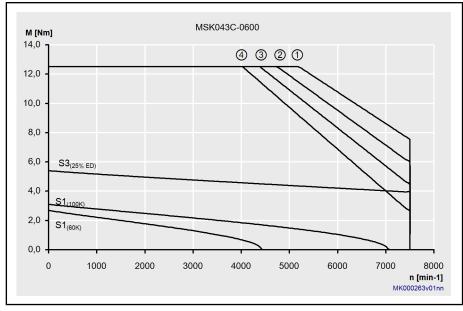


Fig.4-17: Characteristic curves MSK043C-0600

4.9 MSK050B - Technical Data

Designation	Symbol	Unit	MSK050B-0300-NN	MSK050B-0450-NN	MSK050B-0600-NN	
UL Files (UL)			E335445			
Continuous torque at standstill 60 K	M _{0_60}	Nm		3.0		
Continuous current at standstill 60 K	I _{0_60(rms)}	А	1.8	2.8	3.7	
Continuous torque at standstill 100 K	M _{0_100}	Nm		3.4		
Continuous current at standstill 100 K	I _{0_100(rms)}	А	2.0	3.2	4.2	
Maximum torque	M _{max}	Nm		9.0		
Maximum current	I _{max(rms)}	А	7.2	11.2	14.8	
Torque constant at 20 °C	K _{M_N}	Nm/A	1.80	1.20	0.90	
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	111.0	73.5	55.0	
Winding resistance at 20 °C	R ₁₂	ohms	13.10	5.70	3.30	
Winding inductivity	L ₁₂	mH	76.400	33.600	19.900	
Discharge capacity of the component	C _{dis}	nF	2.1	1.4	2.1	
Number of pole pairs	р	-		4		
Moment of inertia of the rotor	J _{rot}	kg*m²		0.00028		
Thermal time constant	T _{th}	min		8.0		
Maximum speed	n _{max}	min⁻¹	4,300	6,0	000	
Sound pressure level	L _P	dB[A]		<75		
Weight ²⁾	m	kg		4.0 (4.9)		
Ambient temperature in operation	T _{amb}	°C		0 40		
Type of protection according to IEC 60529		-	IP65			
Insulation class according to DIN EN 60034-1		-		155		
				Latest am	endment: 2008-10-13	

1) 2) Manufacturing tolerance ±5 %

(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...) *Technical Data*

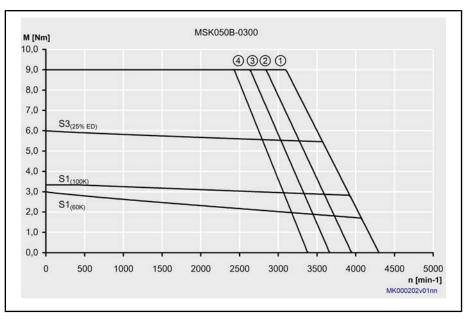
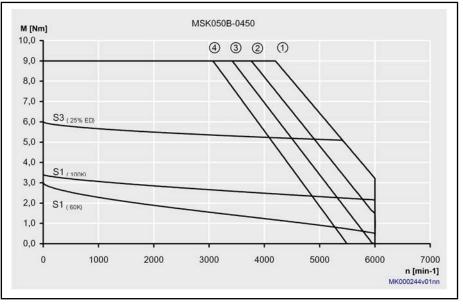
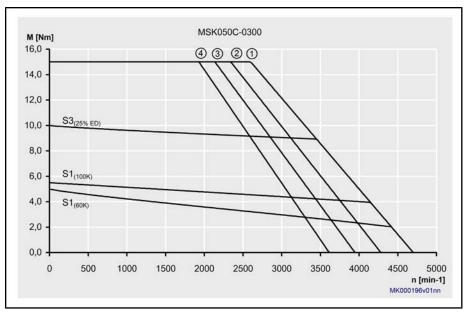



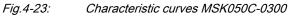
Fig.4-19: Characteristic curves MSK050B-0300

Characteristic curves MSK050B-0450



Fig.4-21: Characteristic curves MSK050B-0600


4.10 MSK050C - Technical Data


Designation	Symbol	Unit	MSK050C-0300-NN	MSK050C-0450-NN	MSK050C-0600-NN	
UL Files (UL)			E335445			
Continuous torque at standstill 60 K	M _{0_60}	Nm		5.0		
Continuous current at standstill 60 K	I _{0_60(rms)}	А	3.1	4.7	6.2	
Continuous torque at standstill 100 K	M _{0_100}	Nm		5.5		
Continuous current at standstill 100 K	I _{0_100(rms)}	A	3.4	5.2	6.8	
Maximum torque	M _{max}	Nm		15.0		
Maximum current	I _{max(rms)}	A	12.4	18.8	24.8	
Torque constant at 20 °C	K _{M_N}	Nm/A	1.77	1.16	0.89	
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	109.0	71.5	55.0	
Winding resistance at 20 °C	R ₁₂	ohms	6.60	3.20	1.70	
Winding inductivity	L ₁₂	mH	46.100	20.200	11.000	
Discharge capacity of the component	C _{dis}	nF	2.6	2.4	2.6	
Number of pole pairs	р	-		4		
Moment of inertia of the rotor	J _{rot}	kg*m ²		0.00033		
Thermal time constant	T _{th}	min		14.0		
Maximum speed	n _{max}	min ⁻¹	4,700	6,0	000	
Sound pressure level	L _P	dB[A]		<75		
Weight ²⁾	m	kg		5.4 (6.3)		
Ambient temperature in operation	T _{amb}	°C	0 40			
Type of protection according to IEC 60529		-	IP65			
Insulation class according to DIN EN 60034-1		-		155		
				Latest am	endment: 2008-02-11	

1) 2) Manufacturing tolerance ±5 %

(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...)

Fig.4-22:

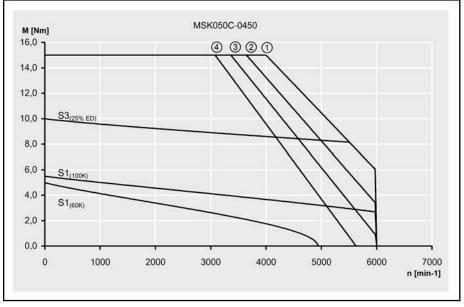


Fig.4-24: Characteristic curves MSK050C-0450

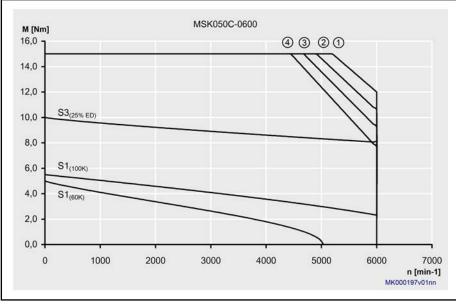
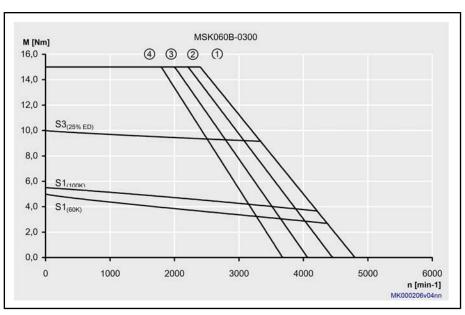
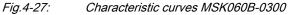


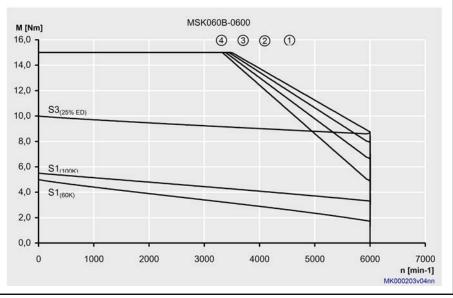
Fig.4-25: C

Characteristic curves MSK050C-0600

4.11 MSK060B - Technical Data


Designation	Symbol	Unit	MSK060B-0300-NN	MSK060B-0600-NN	
UL Files (UL)			E335445		
Continuous torque at standstill 60 K	M _{0_60}	Nm	5	.0	
Continuous current at standstill 60 K	I _{0_60(rms)}	А	3.0	6.1	
Continuous torque at standstill 100 K	M _{0_100}	Nm	5	.5	
Continuous current at standstill 100 K	I _{0_100(rms)}	А	3.3	6.7	
Maximum torque	M _{max}	Nm	15	5.0	
Maximum current	I _{max(rms)}	А	12.0	24.4	
Torque constant at 20 °C	K _{M_N}	Nm/A	1.85	0.90	
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min⁻¹	113.5	55.2	
Winding resistance at 20 °C	R ₁₂	ohms	7.30	1.85	
Winding inductivity	L ₁₂	mH	73.000	18.000	
Discharge capacity of the component	C _{dis}	nF	2	.1	
Number of pole pairs	р	-	4	4	
Moment of inertia of the rotor	J _{rot}	kg*m ²	0.00	0048	
Thermal time constant	T _{th}	min	16	5.0	
Maximum speed	n _{max}	min⁻¹	4,800	6,000	
Sound pressure level	L _P	dB[A]	<	75	
Weight ²⁾	m	kg	5.7	(6.4)	
Ambient temperature in operation	T _{amb}	°C	0	. 40	
Type of protection according to IEC 60529		-	IP65		
Insulation class according to DIN EN 60034-1		-	1	55	
				Latest amendment: 2008-02-	


1) 2) Manufacturing tolerance ±5 %

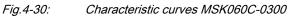

(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...)

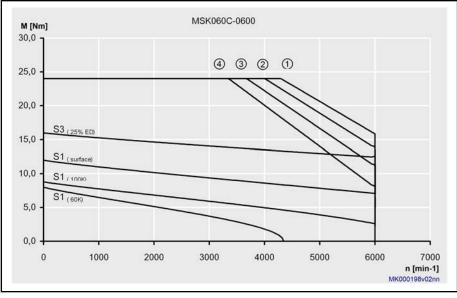
Characteristic Motor Curves

Characteristic curves MSK060B-0600

4.12 MSK060C - Technical Data

Designation	Symbol	Unit	MSK060C-0300-NN	MSK060C-0600-NN	
UL Files (UL)			E335445		
Continuous torque at standstill 60 K	M _{0_60}	Nm	8.	0	
Continuous current at standstill 60 K	I _{0_60(rms)}	А	4.8	9.5	
Continuous torque at standstill 100 K	M _{0_100}	Nm	8.8	8	
Continuous current at standstill 100 K	I _{0_100(rms)}	А	5.3	10.5	
Continuous torque at standstill. surface	M_{0_S}	Nm	12.	0	
Continuous current at standstill. surface	I _{0_S(rms)}	А	7.2	14.3	
Maximum torque	M _{max}	Nm	24.	0	
Maximum current	I _{max(rms)}	А	19.2	38.0	
Torque constant at 20 °C	K _{M_N}	Nm/A	1.85	0.93	
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min⁻¹	114.0	57.0	
Winding resistance at 20 °C	R ₁₂	ohms	3.10	0.80	
Winding inductivity	L ₁₂	mH	35.900	8.600	
Discharge capacity of the component	C_{dis}	nF	2.1	2.2	
Number of pole pairs	р	-	4		
Moment of inertia of the rotor	J _{rot}	kg*m ²	0.00	080	
Thermal time constant	T _{th}	min	14.	0	
Maximum speed	n _{max}	min⁻¹	4,900	6,000	
Sound pressure level	L _P	dB[A]	<7	5	
Weight ²⁾	m	kg	8.4 (9	9.2)	
Ambient temperature in operation	T _{amb}	°C	0 40		
Type of protection according to IEC 60529		-	IP65		
Insulation class according to DIN EN 60034-1		-	15	5	
				Latest amendment: 2008-02-1	


1) 2) Manufacturing tolerance ±5 %


(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...) *Technical Data*

```
Fig.4-29:
```

Characteristic Motor Curves

4.13 MSK061B - Technical Data

Designation	Symbol	Unit	MSK061B-0300-NN
UL Files (UL)			
Continuous torque at standstill 60 K	M _{0_60}	Nm	3.5
Continuous current at standstill 60 K	I _{0_60(rms)}	А	1.9
Continuous torque at standstill 100 K	M _{0_100}	Nm	3.9
Continuous current at standstill 100 K	I _{0_100(rms)}	А	2.1
Maximum torque	M_{max}	Nm	14.0
Maximum current	I _{max(rms)}	А	8.6
Torque constant at 20 °C	K _{M_N}	Nm/A	2.05
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min⁻¹	126.4
Winding resistance at 20 °C	R ₁₂	ohms	13.50
Winding inductivity	L ₁₂	mH	44.000
Discharge capacity of the compo- nent	C _{dis}	nF	1.8
Number of pole pairs	р	-	4
Moment of inertia of the rotor	J _{rot}	kg*m²	0.00044
Thermal time constant	T _{th}	min	15.0
Maximum speed	n _{max}	min⁻¹	4,200
Sound pressure level	L _P	dB[A]	<75
Weight ²⁾	m	kg	5.7 (6.4)
Ambient temperature in operation	T _{amb}	°C	0 40
Type of protection according to IEC 60529		-	IP65
Insulation class according to DIN EN 60034-1		-	155
			Latest amendment: 2010-10-28

1) 2) Manufacturing tolerance ±5 %

(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...)

Fig.4-32:

MSK - Technical data

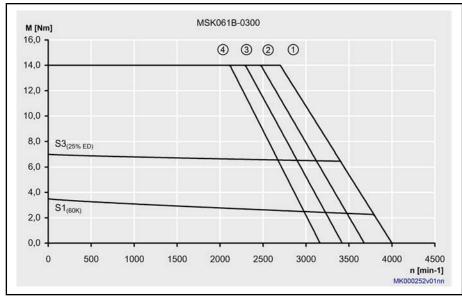
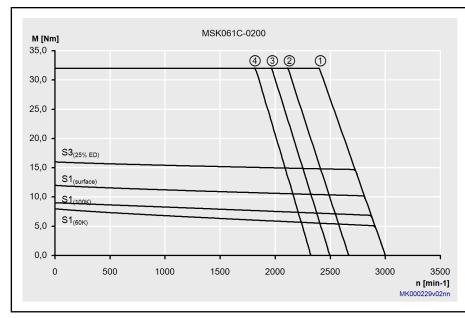


Fig.4-33: Cha

Characteristic curves MSK061B-0300

4.14 MSK061C - Technical Data


Designation	Symbol	Unit	MSK061C-0200-NN	MSK061C-0300-NN	MSK061C-0600-NN		
UL Files (UL)				E335445			
Continuous torque at standstill 60 K	M _{0_60}	Nm	8.0				
Continuous current at standstill 60 K	I _{0_60(rms)}	A	3.2	4.3	7.7		
Continuous torque at standstill 100 K	M _{0_100}	Nm		9.0			
Continuous current at standstill 100 K	I _{0_100(rms)}	A	3.6	4.8	8.7		
Continuous torque at standstill. surface	M_{0_S}	Nm		12.0			
Continuous current at standstill. surface	I _{0_S(rms)}	А	4.8	6.5	11.6		
Maximum torque	M _{max}	Nm		32.0			
Maximum Current	I _{max(rms)}	А	14.4	19.4	34.7		
Torque constant at 20 °C	K _{M_N}	Nm/A	2.80	2.04	1.14		
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	174.9	125.7	70.5		
Winding resistance at 20 °C	R ₁₂	ohms	8.10	4.50	1.55		
Winding inductivity	L ₁₂	mH	36.500	21.400	6.700		
Discharge capacity of the component	C_{dis}	nF	2.7	2.4	2.1		
Number of pole pairs	р	-		4			
Moment of inertia of the rotor	J _{rot}	kg*m²		0.00075			
Thermal time constant	T _{th}	min	18	3.0	15.0		
Maximum speed	n _{max}	min ⁻¹	3,100	4,200	6,000		
Sound pressure level	L _P	dB[A]		<75			
Weight ²⁾	m	kg		8.3 (8.8)			
Ambient temperature in operation	T _{amb}	°C	0 40				
Type of protection according to IEC 60529		-	IP65				
Insulation class according to DIN EN 60034-1		-	155				
				Latest am	endment: 2008-05-29		

1) 2) Manufacturing tolerance ±5 %

(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...)

Fig.4-34:

MSK - Technical data

Fig.4-35: Characteristic curves MSK061C-0200

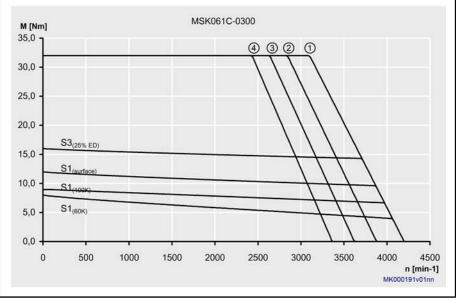


Fig.4-36:

Characteristic curves MSK061C-0300

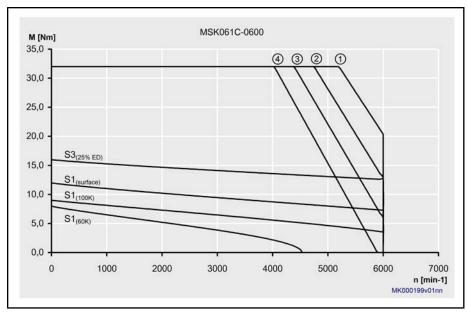
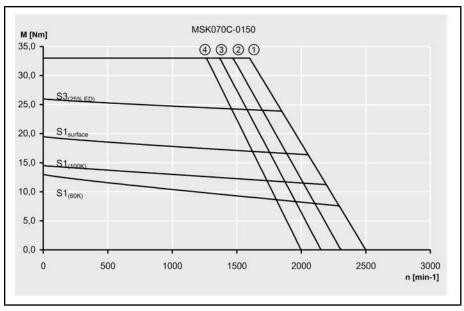


Fig.4-37: Characteristic curves MSK061C-0600

4.15 MSK070C - Technical Data

Designation	Symbol	Unit	MSK070C-0150-NN	MSK070C-0300-NN	MSK070C-0450-NN	
UL Files (UL)			E335445			
Continuous torque at standstill 60 K	M _{0_60}	Nm		13.0		
Continuous current at standstill 60 K	I _{0_60(rms)}	A	4.1	8.2	12.3	
Continuous torque at standstill 100 K	M _{0_100}	Nm		14.5		
Continuous current at standstill 100 K	I _{0_100(rms)}	A	4.6	9.2	13.7	
Continuous torque at standstill. surface	M _{0_S}	Nm		19.5		
Continuous current at standstill. surface	I _{0_S(rms)}	A	6.2	12.3	18.5	
Maximum torque	M _{max}	Nm		33.0		
Maximum current	I _{max(rms)}	А	16.4	32.8	36.9	
Torque constant at 20 °C	K _{M_N}	Nm/A	3.47	1.74	1.16	
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	213.2	107.0	71.3	
Winding resistance at 20 °C	R ₁₂	ohms	4.70	1.13	0.55	
Winding inductivity	L ₁₂	mH	34.900	8.300	4.000	
Discharge capacity of the component	C _{dis}	nF	3.8	4.0	3.1	
Number of pole pairs	р	-		6		
Moment of inertia of the rotor	J _{rot}	kg*m ²		0.00291		
Thermal time constant	T _{th}	min	22	2.0	31.0	
Maximum speed	n _{max}	min ⁻¹	2,500	5,500	6,000	
Sound pressure level	L _P	dB[A]		<75		
Weight ²⁾	m	kg	11.7 (13.2)			
Ambient temperature in operation	T _{amb}	°C	0 40			
Type of protection according to IEC 60529		-	IP65			
Insulation class according to DIN EN 60034-1		-		155		


Latest amendment: 2008-01-29

1) 2) Manufacturing tolerance ±5 %

(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...) *Technical Data*

Fig.4-38:

Characteristic Motor Curves

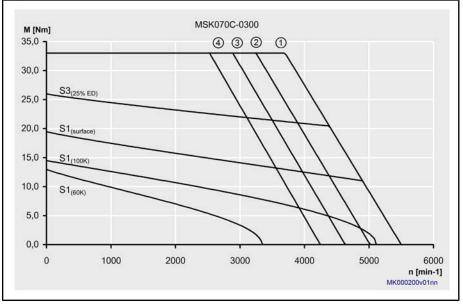


Fig.4-40:

Characteristic curves MSK070C-0300

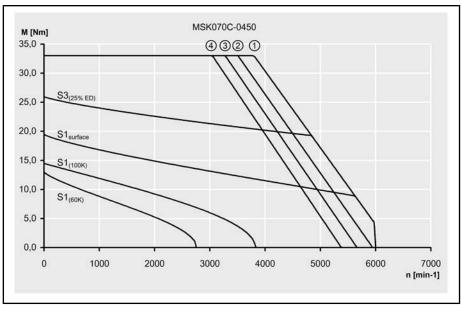
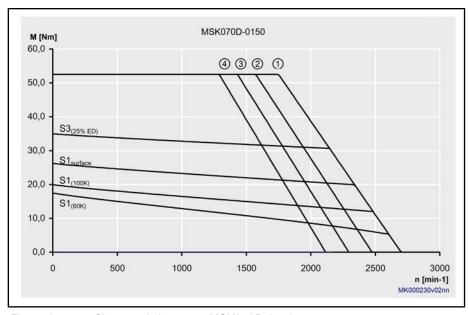
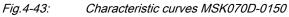
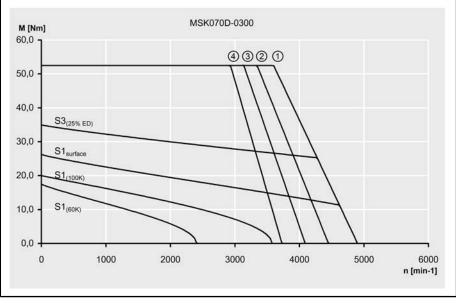


Fig.4-41: Characteristic curves MSK070C-0450


4.16 MSK070D - Technical Data


Designation	Symbol	Unit	MSK070D-0150-NN	MSK070D-0300-NN	MSK070D-0450-NN
UL Files (UL)			E335445		
Continuous torque at standstill 60 K	M _{0_60}	Nm	17.5		
Continuous current at standstill 60 K	I _{0_60(rms)}	A	6.2	11.0	16.6
Continuous torque at standstill 100 K	M _{0_100}	Nm		20.0	
Continuous current at standstill 100 K	I _{0_100(rms)}	А	7.1	12.6	22.0
Continuous torque at standstill. surface	M _{0_S}	Nm		26.3	
Continuous current at standstill. surface	I _{0_S(rms)}	A	9.3	16.5	24.9
Maximum torque	M _{max}	Nm		52.5	
Maximum current	I _{max(rms)}	А	24.8	33.0	49.8
Torque constant at 20 °C	K _{M_N}	Nm/A	3.10	1.75	1.16
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	210.0	107.3	71.1
Winding resistance at 20 °C	R ₁₂	ohms	3.20	0.75	0.37
Winding inductivity	L ₁₂	mH	25.900	6.000	3.000
Discharge capacity of the component	C _{dis}	nF	5.0	4	.5
Number of pole pairs	р	-		6	
Moment of inertia of the rotor	J _{rot}	kg*m²		0.00375	
Thermal time constant	T _{th}	min		23.0	
Maximum speed	n _{max}	min ⁻¹	2,700	4,900	6,000
Sound pressure level	L _P	dB[A]		<75	
Weight ²⁾	m	kg		14.0 (15.6)	
Ambient temperature in operation	T _{amb}	°C	0 40		
Type of protection according to IEC 60529		-	IP65		
Insulation class according to DIN EN 60034-1		-		155	
	· · · · · · · · · · · · · · · · · · ·			Latest am	endment: 2010-05-05


1) 2) Manufacturing tolerance ± 5 %

(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...) *Technical Data*

Fig.4-42:

Characteristic curves MSK070D-0300

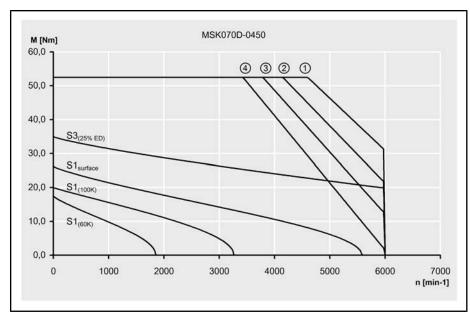
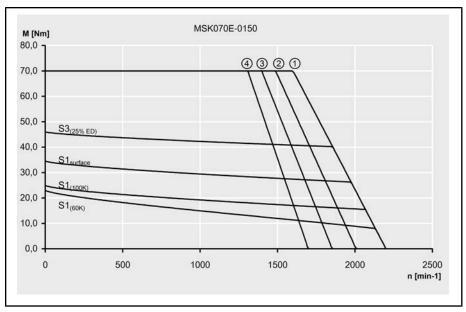
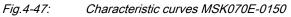


Fig.4-45: Characteristic curves MSK070D-0450

4.17 MSK070E - Technical Data


Designation	Symbol	Unit	MSK070E-0150-NN	MSK070E-0300-NN	MSK070E-0450-NN
UL Files (UL)				E335445	
Continuous torque at standstill 60 K	M _{0_60}	Nm	23.0		
Continuous current at standstill 60 K	I _{0_60(rms)}	А	6.4	15.4	19.3
Continuous torque at standstill 100 K	M _{0_100}	Nm		25.0	
Continuous current at standstill 100 K	I _{0_100(rms)}	А	7.0	16.7	21.0
Continuous torque at standstill. surface	M _{0_S}	Nm		34.5	
Continuous current at standstill, surface	I _{0_S(rms)}	А	9.6	23.1	29.0
Maximum torque	M _{max}	Nm	70.0	65.0	60.0
Maximum current	I _{max(rms)}	А	25.6	49.3	57.9
Torque constant at 20 °C	K _{M_N}	Nm/A	3.94	1.64	1.31
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	242.4	101.0	80.6
Winding resistance at 20 °C	R ₁₂	ohms	3.10	0.53	0.36
Winding inductivity	L ₁₂	mH	24.500	3.900	2.700
Discharge capacity of the component	C_{dis}	nF	6.3	3.5	6.7
Number of pole pairs	р	-		6	
Moment of inertia of the rotor	J _{rot}	kg*m²		0.00458	
Thermal time constant	T _{th}	min		32.0	
Maximum speed	n _{max}	min ⁻¹	2,200	5,300	6,000
Sound pressure level	L _P	dB[A]		<75	
Weight ²⁾	m	kg	16.2 (17.8)		
Ambient temperature in operation	T_{amb}	°C	0 40		
Type of protection according to IEC 60529		-	IP65		
Insulation class according to DIN EN 60034-1		-		155	
				Latest am	endment: 2008-03-18


1) 2) Manufacturing tolerance ±5 %

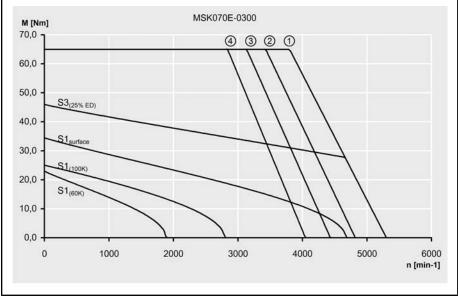

(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...) *Technical Data*

Fig.4-46:

Characteristic Motor Curves

Characteristic curves MSK070E-0300

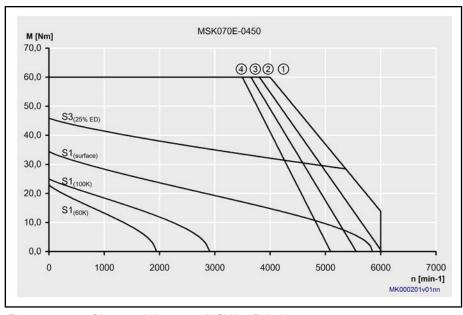


Fig.4-49: Characteristic curves MSK070E-0450

4.18 MSK071C - Technical Data

Data sheet - Motor

Designation	Symbol	Unit	MSK071 C-0200- NN	MSK071 C-0200- FN	MSK071 C-0300- NN	MSK071 C-0300- FN	MSK071 C-0450- NN	MSK071 C-0450- FN
UL Files (UL)			E335445					
Continuous torque at standstill 60 K	M _{0_60}	Nm	12.0					
Continuous current at standstill 60 K	I _{0_60(rms)}	A	5.2 7.3 8					.9
Continuous torque at standstill 100 K	M _{0_100}	Nm	14.0					
Continuous current at standstill 100 K	I _{0_100(rms)}	А	6.1 8.5			10.4		
Continuous torque at standstill. surface	M _{0_S}	Nm	18.0		18.0		18.0	
Continuous current at standstill. surface	I _{0_S(rms)}	A	7.8		11.0		13.4	
Standstill continuous torque liquid	M _{0_L}	Nm		22.8		22.8		22.8
Continuous standstill current liquid	I _{0_L(rms)}	А		9.9		13.9		16.9
Maximum torque	M _{max}	Nm	44.0					
Maximum current	I _{max(rms)}	А	23.4 32.9			40.1		
Torque constant at 20 °C	K _{M_N}	Nm/A	2.50		1.80		1.49	
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	155.5 110.5			91.3		
Winding resistance at 20 °C	R ₁₂	ohms	3.10 1.68 1				1.	10
Winding inductivity	L ₁₂	mH	19.500 10.900 6.700				'00	
Discharge capacity of the component	C _{dis}	nF	4.6 4.2					.2
Number of pole pairs	р	-	4					
Moment of inertia of the rotor	J _{rot}	kg*m²	0.00173					
Thermal time constant	T _{th}	min	28.0	3.0	28.0	3.0	28.0	3.0
Maximum speed	n _{max}	min ⁻¹	3500 5000 5800					00
Sound pressure level	L _P	dB[A]	<75					
Weight ²⁾	m	kg	13.9 (15.8)					
Ambient temperature in operation	T_{amb}	°C	0 40					
Type of protection according to IEC 60529		-	IP65					
Insulation class according to DIN EN 60034-1		-	155					
						Latest am	endment: 2	011-02-15

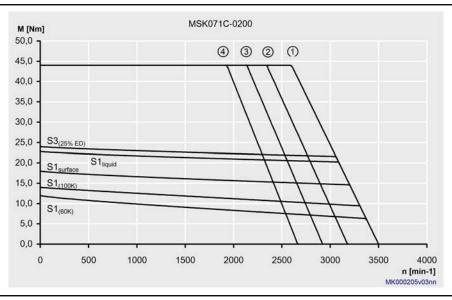
DOK-MOTOR*-MSK******-PR09-EN-P Rexroth IndraDyn S MSK Synchronous Motors

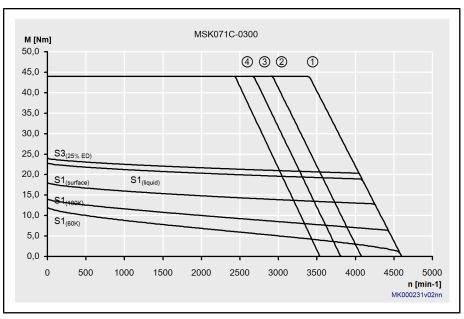
Technical Data

Designation	Symbol	Unit	MSK071 C-0200- NN	MSK071 C-0200- FN	MSK071 C-0300- NN	MSK071 C-0300- FN	MSK071 C-0450- NN	MSK071 C-0450- FN
Data liquid cooling								
Power loss to be dissipated	Pv	kW		0.75		0.75		0.75
Coolant inlet temperature	T _{ein}	°C		10 40		10 40		10 40
Allowed coolant temperature rise at P_{V}	ΔT_{max}	к		10		10		10
Necessary coolant flow at P_{V}	Q _{min}	l/min		1.1		1.1		1.1
Pressure loss at Q _{min}	Δр	bar		0.3		0.3		0.3
Maximum permitted inlet pressure	p _{max}	bar		6.0		6.0		6.0
Volume of coolant duct	V _{kuehl}	I		0.04		0.04		0.04

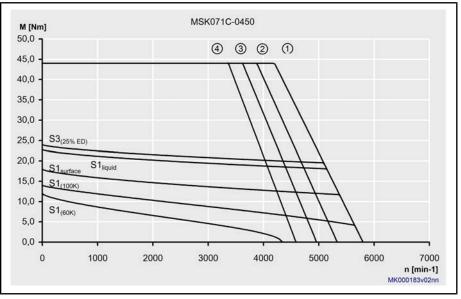
Latest amendment: 2011-02-15

Manufacturing tolerance ±5 %




(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...)


MSK - Technical data



Characteristic curves MSK071C-0200 Fig.4-51:

4.19 MSK071D - Technical Data

Designation	Symbol	Unit	MSK071 D-0200- NN	MSK071 D-0200- FN	MSK071 D-0300- NN	MSK071 D-0300- FN	MSK071 D-0450- NN	MSK071 D-0450- FN
UL Files (UL)			E335445					
Continuous torque at standstill 60 K	M _{0_60}	Nm	17.5					
Continuous current at standstill 60 K	I _{0_60(rms)}	А	7.3 9.1 15.4					5.4
Continuous torque at standstill 100 K	M _{0_100}	Nm	20.0					
Continuous current at standstill 100 K	I _{0_100(rms)}	А	8.6 10.7 17.				' .6	
Continuous torque at standstill. surface	M _{0_S}	Nm	26.3		26.3		26.3	
Continuous current at standstill. surface	I _{0_S(rms)}	А	11.0		13.5		23.1	
Standstill continuous torque liquid	M _{0_L}	Nm		33.3		33.3		33.3
Continuous standstill current liquid	I _{0_L(rms)}	А		13.9		17.2		30.3
Maximum torque	M _{max}	Nm	66.0					
Maximum current	I _{max(rms)}	А	32.8 40.5			69.3		
Torque constant at 20 °C	K _{M_N}	Nm/A	2.63		2.12		1.25	
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	162.0 134.0			77.1		
Winding resistance at 20 °C	R ₁₂	ohms	1.90 1.26 0.45				45	
Winding inductivity	L ₁₂	mH	14.200 10.700 3.200				200	
Discharge capacity of the component	C _{dis}	nF	6.9 7.2 7.8				.8	
Number of pole pairs	р	-	4					
Moment of inertia of the rotor	J _{rot}	kg*m²	0.00230					
Thermal time constant	T _{th}	min	54.0	6.0	54.0	6.0	52.0	6.0
Maximum speed	n _{max}	min⁻¹	3,200 3,800 6,000					000
Sound pressure level	L _P	dB[A]	<75					
Weight ²⁾	m	kg	18.0 (19.6)					
Ambient temperature in operation	T_{amb}	°C	0 40					
Type of protection according to IEC 60529		-	IP65					
Insulation class according to DIN EN 60034-1		-	155					
						Latest am	endment: 2	011-02-15

Designation	Symbol	Unit	MSK071 D-0200- NN	MSK071 D-0200- FN	MSK071 D-0300- NN	MSK071 D-0300- FN	MSK071 D-0450- NN	MSK071 D-0450- FN
Data liquid cooling								
Power loss to be dissipated	P _V	kW		0.90		0.90		0.90
Coolant inlet temperature	T _{ein}	°C		10 40		10 40		10 40
Allowed coolant temperature rise at P_{V}	ΔT_{max}	к		10		10		10
Necessary coolant flow at P_{V}	Q _{min}	l/min		1.3		1.3		1.3
Pressure loss at Q _{min}	Δр	bar		0.4		0.4		0.4
Maximum permitted inlet pressure	p _{max}	bar		6.0		6.0		6.0
Volume of coolant duct	V _{kuehl}	I		0.05		0.05		0.05
			1		<u>.</u>	Latest am	endment: 2	011-02-15

1) 2)

Manufacturing tolerance ±5 %

(...) Values for motors with holding brake, sorted (holding brake 1. holding brake 2 ...) *MSK - Technical data*



Fig.4-55: Characteristic curves MSK071D-0200

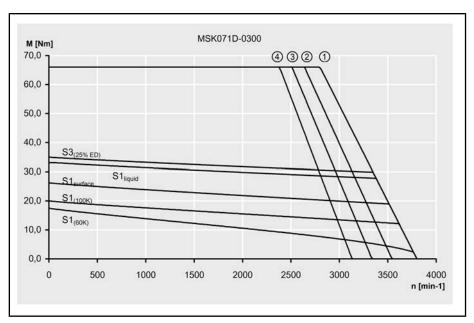
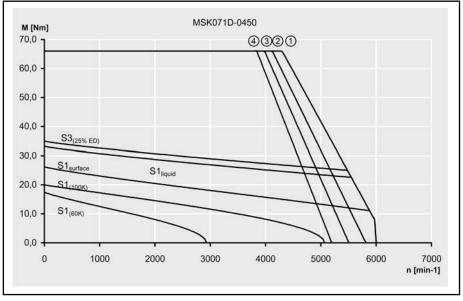



Fig.4-56: Characteristic curves MSK071D-0300

Characteristic curves MSK071D-0450

4.20 MSK071E - Technical Data

Data sheet - Motor

Designation	Symbol	Unit	MSK071 E-0200- NN	MSK071 E-0200- FN	MSK071 E-0300- NN	MSK071 E-0300- FN	MSK071 E-0450- NN	MSK071 E-0450- FN
UL Files (UL)					E33	5445		<u>.</u>
Continuous torque at standstill 60 K	M _{0_60}	Nm	23.0					
Continuous current at standstill 60 K	I _{0_60(rms)}	A	10.1 12.5 20).0	
Continuous torque at standstill 100 K	M _{0_100}	Nm			28	3.0		
Continuous current at standstill 100 K	I _{0_100(rms)}	A	12	2.6	15	5.2	24	1.4
Continuous torque at standstill. surface	M_{0_S}	Nm	34.5		34.5		34.5	
Continuous current at standstill. surface	I _{0_S(rms)}	A	15.2		18.8		30.0	
Standstill continuous torque liquid	M _{0_L}	Nm		43.7		43.7		43.7
Continuous standstill current liquid	I _{0_L(rms)}	А		19.0		24.9		38.0
Maximum torque	M _{max}	Nm	84.0					
Maximum current	I _{max(rms)}	А	45	5.5	56	6.3	90).1
Torque constant at 20 °C	K _{M_N}	Nm/A	2.51 2.05		05	1.	29	
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	15	4.6	12	6.4	82.7	
Winding resistance at 20 °C	R ₁₂	ohms	1.	16	0.	79	0.32	
Winding inductivity	L ₁₂	mH	9.1	150	5.9	900	2.600	
Discharge capacity of the component	C _{dis}	nF	8	.9	9	.3	9	.5
Number of pole pairs	р	-			2	1	•	
Moment of inertia of the rotor	J _{rot}	kg*m²			0.00)290		
Thermal time constant	T _{th}	min	55.0	8.0	55.0	8.0	55.0	8.0
Maximum speed	n _{max}	min ⁻¹	3,4	100	4,2	200	6,0	000
Sound pressure level	L _P	dB[A]			<	75		
Weight ²⁾	m	kg			23.5	(25.1)		
Ambient temperature in operation	T_{amb}	°C			0	. 40		
Type of protection according to IEC 60529		-			IP	65		
Insulation class according to DIN EN 60034-1		-			1	55		
						Latest am	endment: 2	011-02-15

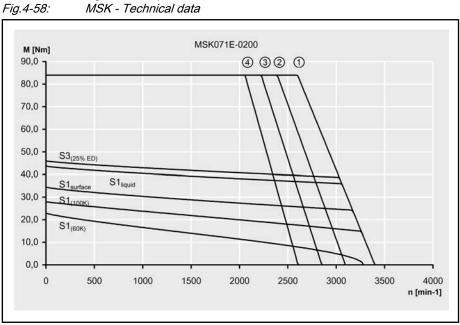
DOK-MOTOR*-MSK******-PR09-EN-P Rexroth IndraDyn S MSK Synchronous Motors

Technical Data

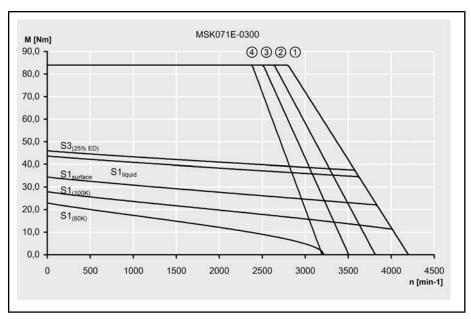
Designation	Symbol	Unit	MSK071 E-0200- NN	MSK071 E-0200- FN	MSK071 E-0300- NN	MSK071 E-0300- FN	MSK071 E-0450- NN	MSK071 E-0450- FN
Data liquid cooling								
Power loss to be dissipated	Pv	kW		1.00		1.00		1.00
Coolant inlet temperature	T _{ein}	°C		10 40		10 40		10 40
Allowed coolant temperature rise at P_{V}	ΔT_{max}	К		10		10		10
Necessary coolant flow at P_{V}	Q _{min}	l/min		1.5		1.5		1.5
Pressure loss at Q _{min}	Δр	bar		0.5		0.5		0.5
Maximum permitted inlet pressure	p _{max}	bar		6.0		6.0		6.0
Volume of coolant duct	V _{kuehl}	I		0.06		0.06		0.06

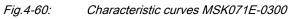
Latest amendment: 2011-02-15

Manufacturing tolerance ±5 %



(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...)


MSK - Technical data



Characteristic Motor Curves

Fig.4-59:

Characteristic curves MSK071E-0200

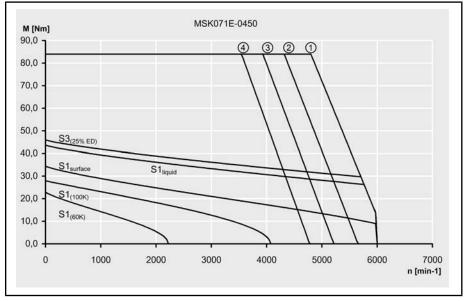
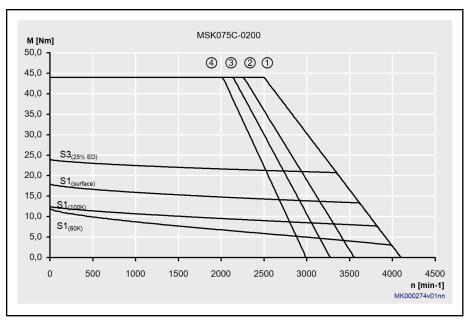


Fig.4-61: Cha

MSK075C - Technical Data 4.21

Designation	Symbol	Unit	MSK075C-0200-NN	MSK075C-0300-NN	MSK075C-0450-NN		
UL Files (UL)					3		
Continuous torque at standstill 60 K	M _{0_60}	Nm		12.0			
Continuous current at standstill 60 K	I _{0_60(rms)}	А	6.3 8.4		12.6		
Continuous torque at standstill 100 K	M _{0_100}	Nm		12.5			
Continuous current at standstill 100 K	I _{0_100(rms)}	А	7.3	8.8	13.1		
Continuous torque at standstill. surface	M _{0_S}	Nm	18.0				
Continuous current at standstill. surface	I _{0_S(rms)}	A	9.5 12.6		18.9		
Maximum torque	M _{max}	Nm	44.0				
Maximum current	I _{max(rms)}	А	28.4	37.8	56.7		
Torque constant at 20 °C	K _{M_N}	Nm/A	2.11 1.58		1.05		
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	129.5	97.0	64.8		
Winding resistance at 20 °C	R ₁₂	ohms	3.00	1.60	0.76		
Winding inductivity	L ₁₂	mH	16.600	8.800	4.200		
Discharge capacity of the component	C _{dis}	nF	3.8	3.2	3.5		
Number of pole pairs	р	-		4			
Moment of inertia of the rotor	J _{rot}	kg*m²		0.00352			
Thermal time constant	T _{th}	min	29	9.0	17.5		
Maximum speed	n _{max}	min ⁻¹	4,100	5,000	6,000		
Sound pressure level	L _P	dB[A]		<75			
Weight ²⁾	m	kg		14.8(16.4)			
Ambient temperature in operation	T _{amb}	°C	0 40				
Type of protection according to IEC 60529		-	IP65				
Insulation class according to DIN EN 60034-1		-	155				
				Latest am	endment: 2010-10-28		


1) 2) Manufacturing tolerance ±5 %

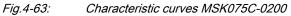

(...) Values for motors with holding brake, sorted (holding brake 1, hold-ing brake 2 ...)

Fig.4-62:

MSK - Technical data

Characteristic Motor Curves

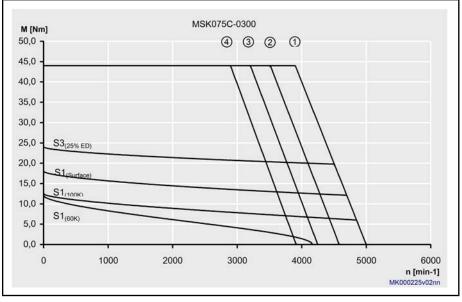
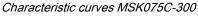



Fig.4-64: Char

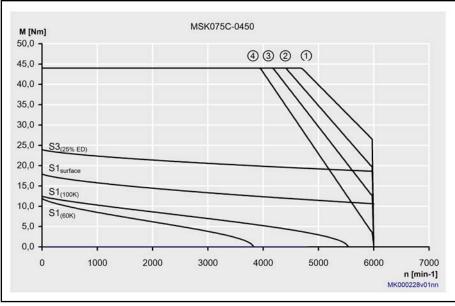


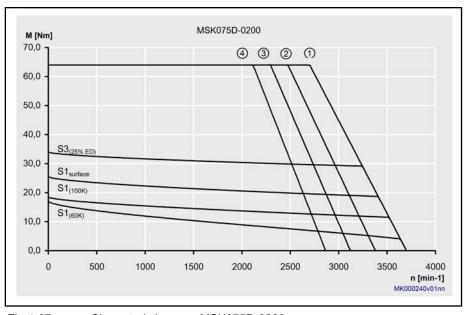
Fig.4-65: C

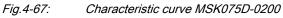
Characteristic curves MSK075C-0450

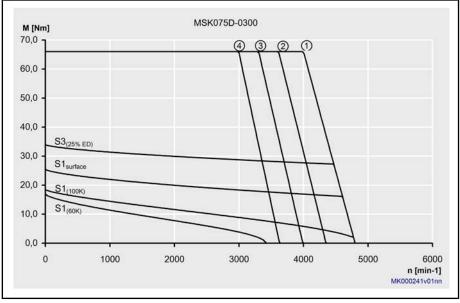
4.22 MSK075D - Technical Data

Designation	Symbol	Unit	MSK075D-0200-NN	MSK075D-0300-NN	MSK075D-0450-NN	
UL Files (UL)					·	
Continuous torque at standstill 60 K	M _{0_60}	Nm		17.0		
Continuous current at standstill 60K	I _{0_60(rms)}	A	8.3 11.7		16.5	
Continuous torque at standstill 100K	M _{0_100}	Nm		18.5		
Continuous current at standstill 100 K	I _{0_100(rms)}	A	9.0	12.7	18.0	
Continuous torque at standstill, surface	M_{0_S}	Nm		25.5		
Continuous current at standstill. surface	I _{0_S(rms)}	А	12.5	17.6	24.8	
Maximum torque	M _{max}	Nm	64.0	66.0	64.0	
Maximum current	I _{max(rms)}	А	37.4	52.7	74.3	
Torque constant at 20 °C	K _{M_N}	Nm/A	2.24 1.60		1.13	
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	138.0	98.2	69.3	
Winding resistance at 20 °C	R ₁₂	ohms	1.80	0.91	0.45	
Winding inductivity	L ₁₂	mH	11.700	5.700	2.900	
Discharge capacity of the component	C _{dis}	nF	4.6	4	.7	
Number of pole pairs	р	-		4		
Moment of inertia of the rotor	J _{rot}	kg*m²		0.00490		
Thermal time constant	T _{th}	min	22.0	17.5	22.0	
Maximum speed	n _{max}	min ⁻¹	3,800	4,800	6,000	
Sound pressure level	L _P	dB[A]		<75		
Weight ²⁾	m	kg		19.0 (20.1)		
Ambient temperature in operation	T_{amb}	°C		0 40		
Type of protection according to IEC 60529		-	IP65			
Insulation class according to DIN EN 60034-1		-	155			
				Latest am	endment: 2008-05-26	

1) 2) Manufacturing tolerance ±5 %

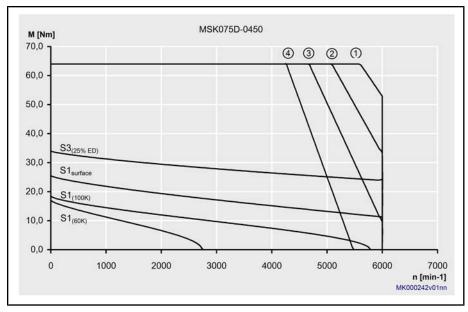

(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...)


Fig.4-66:


MSK - Technical data

Characteristic Motor Curves

Technical Data



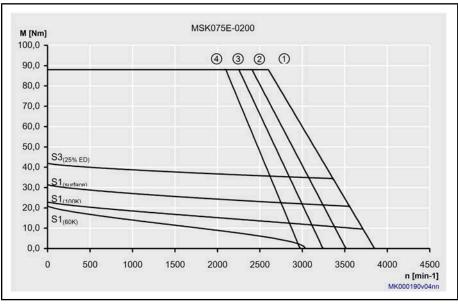
Characteristic curve MSK075D-0300

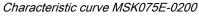
4.23 MSK075E - Technical Data

	Data sheet - Motor											
Designation	Symbol	Unit	MSK075E- 0200-NN	MSK075E- 0300-NN	MSK075E- 0300-FN	MSK075E- 0450-NN	MSK075E- 0450-FN					
UL Files (UL)							3					
Continuous torque at standstill 60 K	M _{0_60}	Nm			21.0							
Continuous current at standstill 60 K	I _{0_60(rms)}	A	10.2 14.2 18.6									
Continuous torque at standstill 100 K	M _{0_100}	Nm			23.0							
Continuous current at standstill 100 K	I _{0_100(rms)}	A	11.2	15	5.6	20).4					
Continuous torque at standstill. surface	M _{0_S}	Nm	3-	1.5		31.5						
Continuous current at standstill. surface	I _{0_S(rms)}	A	15.3	21.3		27.9						
Standstill continuous torque liquid	M _{0_L}	Nm	-	39.9			39.9					
Continuous standstill current liquid	I _{0_L(rms)}	А	-	27.0			35.3					
Maximum torque	M _{max}	Nm			88.0							
Maximum current	I _{max(rms)}	А	45.9	45.9 63.9			3.7					
Torque constant at 20 °C	K _{M_N}	Nm/A	2.26	1.	63	1.24						
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	139.0	10	0.0	76.5						
Winding resistance at 20 °C	R ₁₂	ohms	1.24	0.	65	0.39						
Winding inductivity	L ₁₂	mH	8.400	4.4	160	2.700						
Discharge capacity of the component	C _{dis}	nF	5.8	6	.5	5	.6					
Number of pole pairs	р	-			4	I						
Moment of inertia of the rotor	J _{rot}	kg*m²			0.00613							
Thermal time constant	T _{th}	min	29	9.0	10.0	29.0	10.0					
Maximum speed	n _{max}	min⁻¹	3,850	5,2	200	6,0	000					
Sound pressure level	L _P	dB[A]			<75							
Weight ²⁾	m	kg		22	2.5 (23.6) (24	.1)						
Ambient temperature in operation	T _{amb}	°C			0 40							
Type of protection according to IEC 60529		-			IP65							
Insulation class according to DIN EN 60034-1		-			155							
Data liquid cooling												

Designation	Symbol	Unit	MSK075E- 0200-NN	MSK075E- 0300-NN	MSK075E- 0300-FN	MSK075E- 0450-NN	MSK075E- 0450-FN						
Power loss to be dissipated	Pv	kW			1.00		1.00						
Coolant inlet temperature	T _{ein}	°C			10 40		10 40						
Allowed coolant temperature rise at P_{V}	ΔT_{max}	к			10		10						
Necessary coolant flow at P_{V}	Q _{min}	l/min			1.5		1.5						
Pressure loss at Q _{min}	Δр	bar			0.5		0.5						
Maximum permitted inlet pressure	p _{max}	bar			6.0		6.0						
Volume of coolant duct	V _{kuehl}	I			0.06		0.06						
			Latest amendment: 2011-02-15										

MSK - Technical data


(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...)


1)

2)

Fig.4-70:

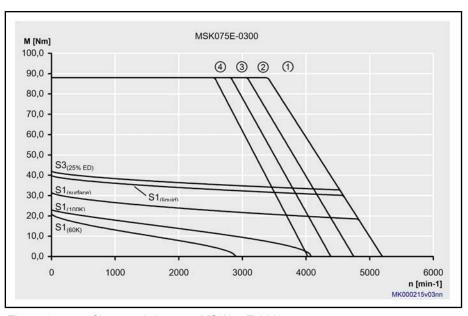
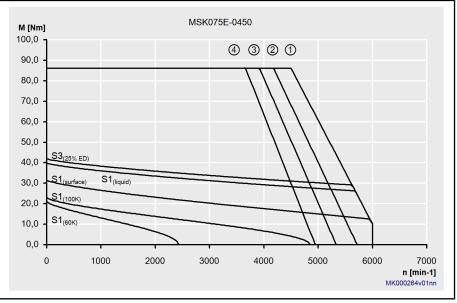



Fig.4-72: Characteristic curve MSK075E-300

Characteristic curve MSK075E-0450

4.24 MSK076C - Technical Data

Designation	Symbol	Unit	MSK076C-0300-NN	MSK076C-0450-NN	
UL Files (UL)			E335	445	
Continuous torque at standstill 60 K	M _{0_60}	Nm	12	.0	
Continuous current at standstill 60 K	I _{0_60(rms)}	А	7.2	12.2	
Continuous torque at standstill 100 K	M _{0_100}	Nm	13	.5	
Continuous current at standstill 100 K	I _{0_100(rms)}	А	8.1	13.7	
Continuous torque at standstill. surface	M _{0_S}	Nm	18	.0	
Continuous current at standstill. surface	I _{0_S(rms)}	А	10.8	18.3	
Maximum torque	M _{max}	Nm	43	.5	
Maximum current	I _{max(rms)}	А	32.4	54.9	
Torque constant at 20 °C	K _{M_N}	Nm/A	1.84	1.14	
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	113.0	70.5	
Winding resistance at 20 °C	R ₁₂	ohms	1.85	0.71	
Winding inductivity	L ₁₂	mH	12.600	4.700	
Discharge capacity of the component	C _{dis}	nF	6.5	6.0	
Number of pole pairs	р	-	4		
Moment of inertia of the rotor	J _{rot}	kg*m²	0.00	430	
Thermal time constant	T _{th}	min	25	.0	
Maximum speed	n _{max}	min⁻¹	4,700	5,000	
Sound pressure level	L _P	dB[A]	< 7	75	
Weight ²⁾	m	kg	13.8 (14.9)	
Ambient temperature in operation	T _{amb}	°C	0	40	
Type of protection according to IEC 60529		-	IP65		
Insulation class according to DIN EN 60034-1		-	15	5	
				Latest amendment: 2008-01-2	

1) 2) Manufacturing tolerance ±5 %

(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...)

Fig.4-74:

MSK - Technical data (standard and air cooling)

Characteristic Motor Curves

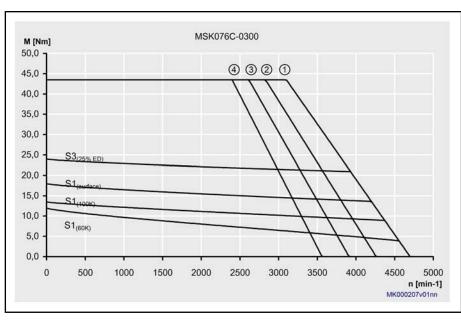
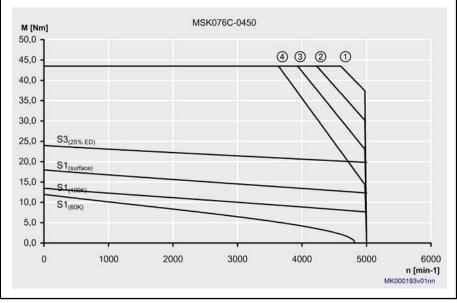



Fig.4-75: Characteristic curves MSK076C-0300

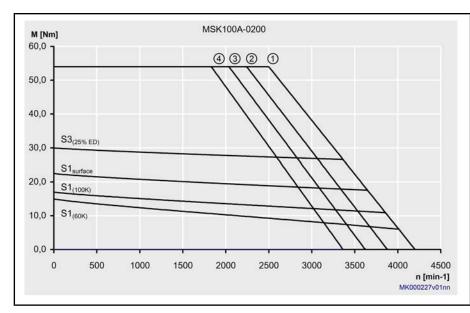
Characteristic curves MSK076C-0450

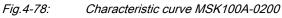
4.25 MSK100A - Technical Data

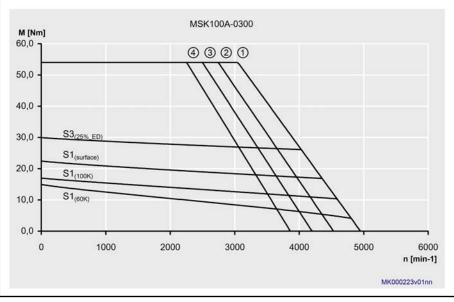
Data sheet - Motor

Designation	Symbol	Unit	MSK100A-0200-NN	MSK100A-0300-NN	MSK100A-0450-NN		
UL Files (UL)				E335445	·		
Continuous torque at standstill 60 K	M _{0_60}	Nm		15.0			
Continuous current at standstill 60 K	I _{0_60(rms)}	A	9.2 10.2		12.0		
Continuous torque at standstill 100 K	M _{0_100}	Nm		17.0			
Continuous current at standstill 100 K	I _{0_100(rms)}	А	10.4	11.6	13.6		
Continuous torque at standstill, surface	M _{0_S}	Nm		22.5			
Continuous current at standstill. surface	I _{0_S(rms)}	A	13.8	15.3	18.0		
Maximum torque	M _{max}	Nm	54.0				
Maximum Current	I _{max(rms)}	А	41.4	45.9	54.0		
Torque constant at 20 °C ¹⁾	K _{M_N}	Nm/A	1.89 1.70		1.45		
Voltage constant at 20 °C ²⁾	K _{EMK_1000}	V/min ⁻¹	116.4	104.5	89.4		
Winding resistance at 20 °C	R ₁₂	ohms	1.45	1.10	0.81		
Winding inductivity	L ₁₂	mH	13.900	11.200	7.800		
Discharge capacity of the component	C _{dis}	nF	4.8	4.6	4.9		
Number of pole pairs	р	-		4			
Moment of inertia of the rotor	J_{rot}	kg*m²		0.01100			
Thermal time constant	T _{th}	min	48.0	39	9.0		
Maximum speed	n _{max}	min ⁻¹	4,400	5,200	6,000		
Sound pressure level	L _P			<75			
Weight 3)	m	kg		23.0 (25.4)			
Ambient temperature in operation	T_{amb}	°C	0 40				
Type of protection according to IEC 60529		-	IP65				
Insulation class according to DIN EN 60034-1		-	155				
				Latest am	endment: 2008-07-31		

1) 2) 3) Manufacturing tolerance ±5 %

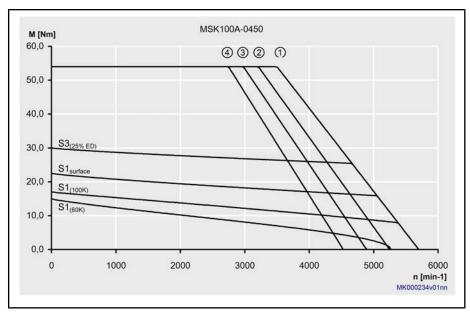

(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...)

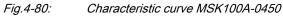

Fig.4-77:


MSK - Technical data (standard and air cooling)

Characteristic Motor Curves

Technical Data





Characteristic curve MSK100A-0300

4.26 MSK100B - Technical Data

Designation	Symbol	Unit	MSK100B-020 0-NN	MSK100B-030 0-NN	MSK100B-040 0-NN	MSK100B-045 0-NN	
UL Files (UL)				E33	5445	<u>.</u>	
Continuous torque at standstill 60 K	M _{0_60}	Nm		28	3.0		
Continuous current at standstill 60 K	I _{0_60(rms)}	А	14.7	17.4	24.5	28.5	
Continuous torque at standstill 100 K	M _{0_100}	Nm		33	3.0		
Continuous current at standstill 100 K	I _{0_100(rms)}	А	17.3	20.5	29.5	33.6	
Continuous torque at standstill, surface	M _{0_S}	Nm		42	2.0		
Continuous current at standstill, surface	I _{0_S(rms)}	А	22.1	26.1	35.6	42.8	
Maximum torque	M _{max}	Nm		10	2.0		
Maximum current	I _{max(rms)}	А	66.2	66.2 78.3 106.		110.7	
Torque constant at 20 °C	K _{M_N}	Nm/A	2.10	1.77	1.30	1.14	
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	129.5	108.5	80.0	70.0	
Winding resistance at 20 °C	R ₁₂	ohms	0.58	0.43	0.23	0.17	
Winding inductivity	L ₁₂	mH	7.600	5.500	3.100	2.200	
Discharge capacity of the component	C _{dis}	nF	10.3	9.3	10).3	
Number of pole pairs	р	-		2	4		
Moment of inertia of the rotor	J_{rot}	kg*m²		0.01	1920		
Thermal time constant	T _{th}	min		40).0		
Maximum speed	n _{max}	min ⁻¹	4,100		4,500		
Sound pressure level	L _P	dB[A]		<	75		
Weight ²⁾	m	kg		34.0 (36	.5) (37.8)		
Ambient temperature in operation	T _{amb}	°C		0	. 40		
Type of protection according to IEC 60529		-	IP65				
Insulation class according to DIN EN 60034-1		-	155				
					Latest amendm	ent: 2008-11-28	

Manufacturing tolerance ±5 %

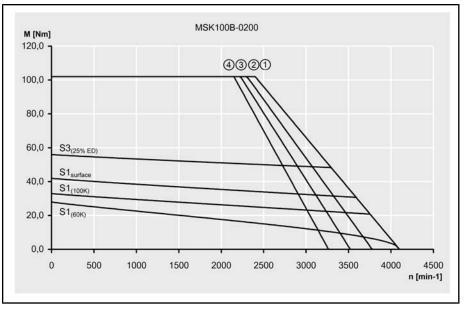

(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...)

Fig.4-81:

1)

2)

Characteristic Motor Curves

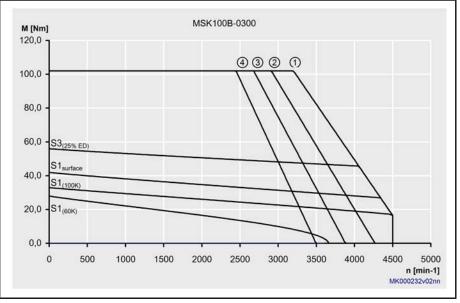


Fig.4-83:

Characteristic curve MSK100B-0300

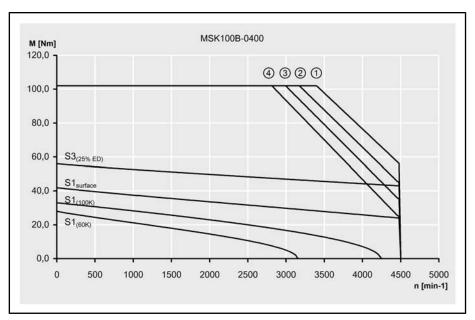
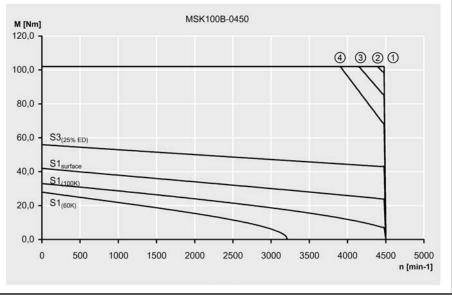
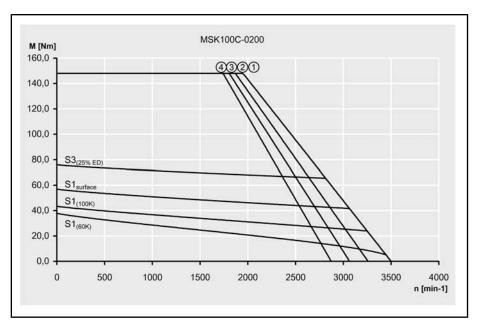



Fig.4-84: Characteristic curve MSK100B-0400

Characteristic curve MSK100B-0450

4.27 MSK100C - Technical Data


Designation	Symbol	Unit	MSK100C-0200-NN	MSK100C-0300-NN	MSK100C-0450-NN		
UL Files (UL)				E335445	•		
Continuous torque at standstill 60 K	M _{0_60}	Nm		38.0			
Continuous current at standstill 60 K	I _{0_60(rms)}	А	17.7 21.6		35.4		
Continuous torque at standstill 100 K	M _{0_100}	Nm		43.5			
Continuous current at standstill 100 K	I _{0_100(rms)}	A	20.3	27.0	43.5		
Continuous torque at standstill. surface	M _{0_S}	Nm		57.0			
Continuous current at standstill. surface	I _{0_S(rms)}	А	26.6 32.4		52.9		
Maximum torque	M _{max}	Nm	148.0				
Maximum current	I _{max(rms)}	А	79.7	97.2	159.3		
Torque constant at 20 °C	K _{M_N}	Nm/A	2.37	1.94	1.18		
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	145.5	119.1	72.7		
Winding resistance at 20 °C	R ₁₂	ohms	0.46	0.30	0.12		
Winding inductivity	L ₁₂	mH	6.700	4.200	1.600		
Discharge capacity of the component	C_{dis}	nF	12.8	14.3	13.2		
Number of pole pairs	р	-		4			
Moment of inertia of the rotor	J _{rot}	kg*m²		0.02730			
Thermal time constant	T _{th}	min		90.0			
Maximum speed	n _{max}	min⁻¹	3,500	4,500	4,000		
Sound pressure level	L _P	dB[A]		<75			
Weight ²⁾	m	kg		45.1 (48.9)			
Ambient temperature in operation	T _{amb}	°C		0 40			
Type of protection according to IEC 60529		-	IP65				
Insulation class according to DIN EN 60034-1		-	155				
				Latest am	endment: 2008-07-31		


1) 2) Manufacturing tolerance ± 5 %

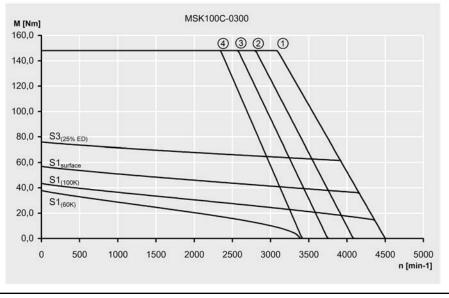
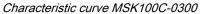

(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...) *Technical Data*

Fig.4-86:


Characteristic Motor Curves

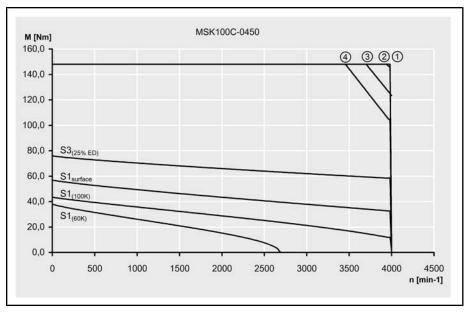
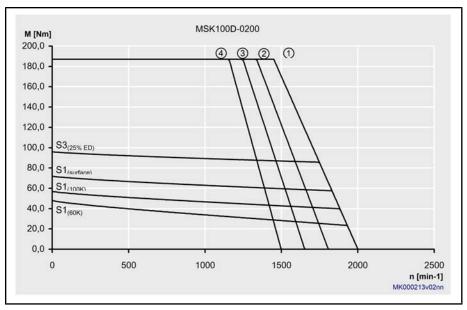
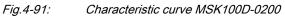


Fig.4-89: Characteristic curve MSK100C-0450

4.28 MSK100D - Technical Data


Designation	Symbol	Unit	MSK100D-0200-NN	MSK100D-0300-NN	MSK100D-0350-NN		
UL Files (UL)				E335445	3		
Continuous torque at standstill 60 K	M _{0_60}	Nm		48.0			
Continuous current at standstill 60 K	I _{0_60(rms)}	A	13.0 20.7		29.9		
Continuous torque at standstill 100 K	M _{0_100}	Nm		57.0			
Continuous current at standstill 100 K	I _{0_100(rms)}	А	15.4	24.8	35.5		
Continuous torque at standstill. surface	M_{0_S}	Nm					
Continuous current at standstill. surface	I _{0_S(rms)}	A	19.5	31.1	44.9		
Maximum torque	M _{max}	Nm	18	7.0	185.0		
Maximum current	I _{max(rms)}	А	58.5	93.2	135.0		
Torque constant at 20 °C ¹⁾	K _{M_N}	Nm/A	4.28	2.55	1.86		
Voltage constant at 20 °C ²⁾	K _{EMK_1000}	V/min ⁻¹	263.5	157.0	114.5		
Winding resistance at 20 °C	R ₁₂	ohms	0.97	0.35	0.20		
Winding inductivity	L ₁₂	mH	14.800	5.650	3.200		
Discharge capacity of the component	C_{dis}	nF	17.6	16.0	18.0		
Number of pole pairs	р	-		4	-		
Moment of inertia of the rotor	J_{rot}	kg*m²		0.03500			
Thermal time constant	T _{th}	min		90.0			
Maximum speed	n _{max}	min ⁻¹	2,000	3,0	000		
Sound pressure level	L _P	dB[A]		<75			
Weight 3)	m	kg		56.0 (59.8)			
Ambient temperature in operation	T_{amb}	°C	0 40				
Type of protection according to IEC 60529		-	IP65				
Insulation class according to DIN EN 60034-1		-	155				
				Latest am	endment: 2009-03-10		


1) 2) 3) Manufacturing tolerance ±5 %

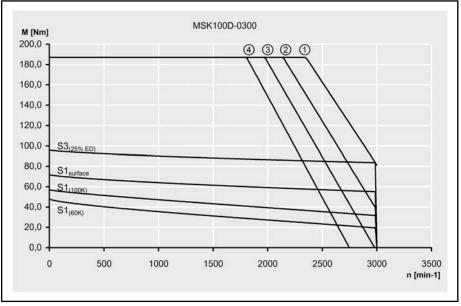

(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...) *Technical Data*

Fig.4-90:

Characteristic Motor Curves

Characteristic curve MSK100D-0300

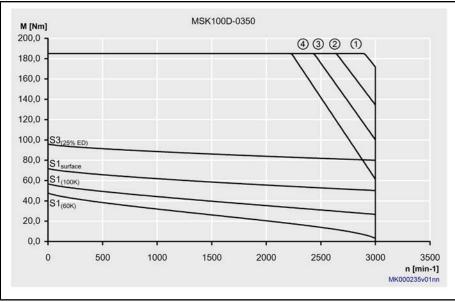


Fig.4-93:

Characteristic curve MSK100D-0350

4.29 MSK101C - Technical Data

Data sheet - Motor

Designation	Symbol	Unit	MSK101 C-0200- NN	MSK101 C-0200- FN	MSK101 C-0300- NN	MSK101 C-0300- FN	MSK101 C-0450- NN	MSK101 C-0450- FN
UL Files (UL)				9	E33	5445		
Continuous torque at standstill 60 K	M _{0_60}	Nm	32.0					
Continuous current at standstill 60 K	I _{0_60(rms)}	А	14.9 18.7 25.4					5.1
Continuous torque at standstill 100 K	M _{0_100}	Nm			36	6.5		
Continuous current at standstill 100 K	I _{0_100(rms)}	А	17	7.0	21	1.3	28.6	37.7
Continuous torque at standstill. surface	M _{0_S}	Nm	48.0		48.0		48.0	
Continuous current at standstill. surface	I _{0_S(rms)}	А	22.4		28.1		37.7	
Standstill continuous torque liquid	M _{0_L}	Nm		60.8		60.8		60.8
Continuous standstill current liquid	I _{0_L(rms)}	А		28.3		35.3		47.7
Maximum torque	M _{max}	Nm	110.0					
Maximum current	I _{max(rms)}	А	67.1 84.2				11	3.0
Torque constant at 20 °C	K _{M_N}	Nm/A	2.37		1.	1.88		40
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	14	6.0	11	5.7	86.3	
Winding resistance at 20 °C	R ₁₂	ohms	0.	68	0.	45	0.23	
Winding inductivity	L ₁₂	mH	9.7	700	6.0	000	3.300	
Discharge capacity of the component	C _{dis}	nF		6	.2		6	.8
Number of pole pairs	р	-			2	4	•	
Moment of inertia of the rotor	J _{rot}	kg*m²			0.00	0650		
Thermal time constant	T _{th}	min	36.0	5.0	38.0	5.0	36.0	5.0
Maximum speed	n _{max}	min ⁻¹	3,3	300	4,5	500	5,8	800
Sound pressure level	L _P	dB[A]			<	75		
Weight ²⁾	m	kg			28.3	(32.1)		
Ambient temperature in operation	T _{amb}	°C			0	. 40		
Type of protection according to IEC 60529		-			IP	65		
Insulation class according to DIN EN 60034-1		-	155					
						Latest am	endment: 2	010-10-28

DOK-MOTOR*-MSK******-PR09-EN-P Rexroth IndraDyn S MSK Synchronous Motors

Technical Data

Designation	Symbol	Unit	MSK101 C-0200- NN	MSK101 C-0200- FN	MSK101 C-0300- NN	MSK101 C-0300- FN	MSK101 C-0450- NN	MSK101 C-0450- FN
Data liquid cooling								
Power loss to be dissipated	Pv	kW		1.20		1.20		1.20
Coolant inlet temperature	T _{ein}	°C		10 40		10 40		10 40
Allowed coolant temperature rise at P_{V}	ΔT _{max}	К		10		10		10
Necessary coolant flow at P_{V}	Q _{min}	l/min		1.7		1.7		1.7
Pressure loss at Q _{min}	Δр	bar		0.6		0.6		0.6
Maximum permitted inlet pressure	p _{max}	bar		6.0		6.0		6.0
Volume of coolant duct	V _{kuehl}	I		0.09		0.09		0.09

Latest amendment: 2010-10-28

Manufacturing tolerance ±5 %

2)

(...) Values for motors with holding brake, sorted (holding brake 1, hold-ing brake 2 ...) *MSK - Technical data*

Fig.4-94:

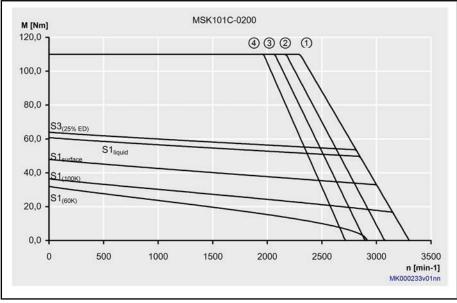
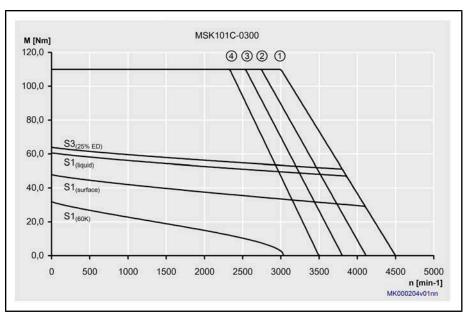
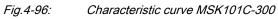




Fig.4-95: Characteristic curve MSK101C-0200

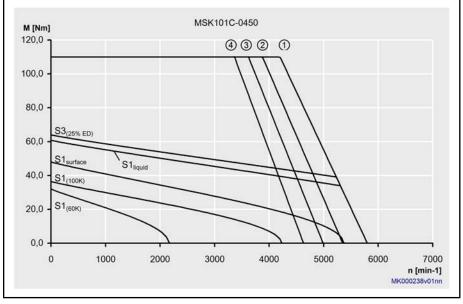
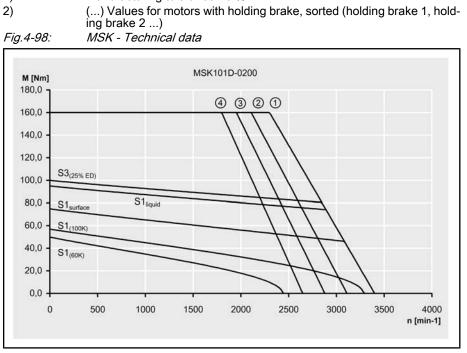


Fig.4-97: Characteristic

Characteristic curve MSK101C-0450

4.30 MSK101D - Technical Data

Designation	Symbol	Unit	MSK101 D-0200- NN	MSK101 D-0200- FN	MSK101 D-0300- NN	MSK101 D-0300- FN	MSK101 D-0450- NN	MSK101 D-0450- FN	
UL Files (UL)			E335445						
Continuous torque at standstill 60 K	M _{0_60}	Nm	50.0						
Continuous current at standstill 60 K	I _{0_60(rms)}	A	22.2 30.6 41.7						
Continuous torque at standstill 100 K	M _{0_100}	Nm		57.0					
Continuous current at standstill 100 K	I _{0_100(rms)}	A	26	5.8	34	1.9	50	50.6	
Continuous torque at standstill. surface	M _{0_S}	Nm	75.0		75.0		75.0		
Continuous current at standstill. surface	I _{0_S(rms)}	A	33.3		45.9		66.0		
Standstill continuous torque liquid	M _{0_L}	Nm		95.0		95.0		95.0	
Continuous standstill current liquid	I _{0_L(rms)}	А		43.3		58.1		79.2	
Maximum torque	M _{max}	Nm	160.0						
Maximum current	I _{max(rms)}	А	99.9 137.7				187.7		
Torque constant at 20 °C	K _{M_N}	Nm/A	2.48		1.80		1.32		
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	152.0 113.0		81.0				
Winding resistance at 20 °C	R ₁₂	ohms	0.35 0.19 0				0.	10	
Winding inductivity	L ₁₂	mH	6.0	000	3.2	200	1.7	'00	
Discharge capacity of the component	C _{dis}	nF	13.2 9.1 13.2					3.2	
Number of pole pairs	р	-				4	3		
Moment of inertia of the rotor	J _{rot}	kg*m²			0.00)932			
Thermal time constant	T _{th}	min	100.0	5.0	100.0	5.0	100.0	5.0	
Maximum speed	n _{max}	min ⁻¹	3,400 4,600 6,000						
Sound pressure level	L _P	dB[A]	<75						
Weight ²⁾	m	kg	40.0 (43.8) (46.2)						
Ambient temperature in operation	T _{amb}	°C			0	. 40			
Type of protection according to IEC 60529		-	IP65						
Insulation class according to DIN EN 60034-1		-			1	55			
						Latest am	endment: 2	011-02-1	


Designation	Symbol	Unit	MSK101 D-0200- NN	MSK101 D-0200- FN	MSK101 D-0300- NN	MSK101 D-0300- FN	MSK101 D-0450- NN	MSK101 D-0450- FN
Data liquid cooling								
Power loss to be dissipated	P _V	kW		1.35		1.35		1.35
Coolant inlet temperature	T _{ein}	°C		10 40		10 40		10 40
Allowed coolant temperature rise at P_{V}	ΔT_{max}	к		10		10		10
Necessary coolant flow at P_{V}	Q _{min}	l/min		2.0		2.0		2.0
Pressure loss at Q _{min}	Δр	bar		0.7		0.7		0.7
Maximum permitted inlet pressure	p _{max}	bar		6.0		6.0		6.0
Volume of coolant duct	V _{kuehl}	I		0.11		0.11		0.11

Latest amendment: 2011-02-15

Manufacturing tolerance ±5 %

Characteristic Motor Curves

Characteristic curve MSK101D-0200

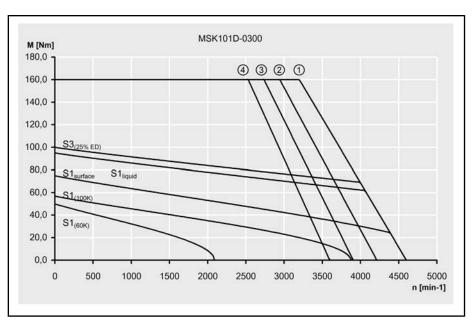


Fig.4-100: Characteristic curve MSK101D-300

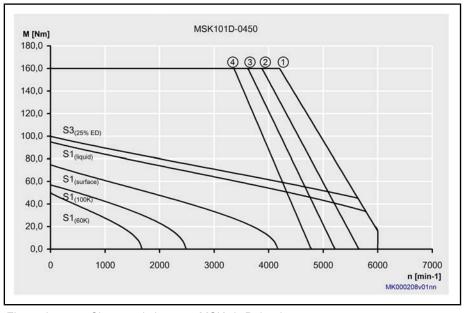


Fig.4-101: Characteristic curve MSK101D-0450

4.31 MSK101E - Technical Data

Data sheet - Motor

Designation	Symbol	Unit	MSK101 E-0200- NN	MSK101 E-0200- FN	MSK101 E-0300- NN	MSK101 E-0300- FN	MSK101 E-0450- NN	MSK101 E-0450- FN	
UL Files (UL)			E335445						
Continuous torque at standstill 60 K	M _{0_60}	Nm	70.0						
Continuous current at standstill 60 K	I _{0_60(rms)}	А	32.1 41.6				58	3.3	
Continuous torque at standstill 100 K	M _{0_100}	Nm	80.5						
Continuous current at standstill 100 K	I _{0_100(rms)}	A	39	9.0	47	7.8	67	67.6	
Continuous torque at standstill. surface	M _{0_S}	Nm	105.0		105.0		105.0		
Continuous current at standstill. surface	I _{0_S(rms)}	A	48.2		62.4		87.5		
Standstill continuous torque liquid	M _{0_L}	Nm		133.0		133.0		116.0	
Continuous standstill current liquid	I _{0_L(rms)}	А		63.8		79.0		97.0	
Maximum torque	M _{max}	Nm			23	1.0		•	
Maximum current	I _{max(rms)}	А	144.5 187.4				26	262.4	
Torque constant at 20 °C	K _{M_N}	Nm/A	2.40		1.85		1.32		
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	148.0 113.8		3.8	81.2			
Winding resistance at 20 °C	R ₁₂	ohms	0.18 0.11 0.0				06		
Winding inductivity	L ₁₂	mH	3.300 1.960 1.080)80	
Discharge capacity of the component	C _{dis}	nF	15.2 16.7						
Number of pole pairs	р	-			2	1			
Moment of inertia of the rotor	J _{rot}	kg*m ²			0.01	380			
Thermal time constant	T _{th}	min	100.0	5.0	100.0	5.0	100.0	5.0	
Maximum speed	n _{max}	min ⁻¹	4,500 4,600 6,000					000	
Sound pressure level	L _P	dB[A]	<75						
Weight ²⁾	m	kg	53.5 (57.3) (59.7)						
Ambient temperature in operation	T _{amb}	°C			0	. 40			
Type of protection according to IEC 60529		-	IP65						
Insulation class according to DIN EN 60034-1		-			15	55			
	:					Latest am	endment: 2	2011-02-15	

DOK-MOTOR*-MSK******-PR09-EN-P Rexroth IndraDyn S MSK Synchronous Motors

Technical Data

Designation	Symbol	Unit	MSK101 E-0200- NN	MSK101 E-0200- FN	MSK101 E-0300- NN	MSK101 E-0300- FN	MSK101 E-0450- NN	MSK101 E-0450- FN
Data liquid cooling								
Power loss to be dissipated	Pv	kW		1.50		1.50		1.50
Coolant inlet temperature	T _{ein}	°C		10 40		10 40		10 40
Allowed coolant temperature rise at P_{V}	ΔT_{max}	К		10		10		10
Necessary coolant flow at P_{V}	Q _{min}	l/min		2.2		2.2		2.2
Pressure loss at Q _{min}	Δр	bar		0.8		0.8		0.8
Maximum permitted inlet pressure	p _{max}	bar		6.0		6.0		6.0
Volume of coolant duct	V _{kuehl}	I		0.14		0.14		0.14

Latest amendment: 2011-02-15

Manufacturing tolerance ±5 %

Fig.4-102:

(...) Values for motors with holding brake, sorted (holding brake 1, hold-ing brake 2 ...) *MSK - Technical data*

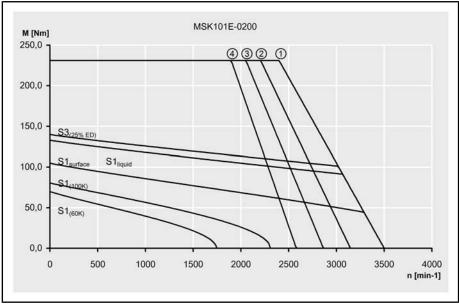
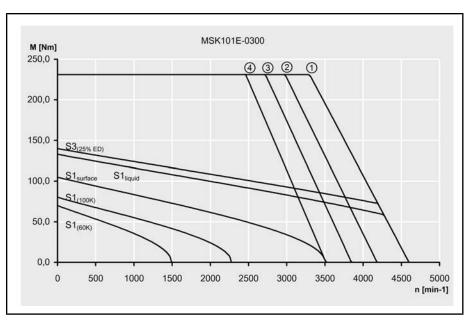
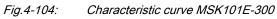




Fig.4-103: Characteristic curve MSK101E-0200

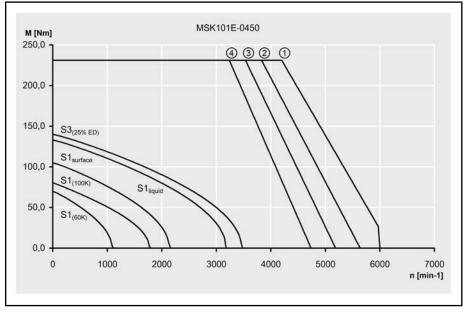


Fig.4-105: Characteristic curve MSK101E-0450

4.32 MSK103A - Technical Data

Designation	Symbol	Unit	MSK103A-0300-NN
UL Files (UL)			E355455
Continuous torque at standstill 60 K	M _{0_60}	Nm	21.0
Continuous current at standstill 60 K	I _{0_60(rms)}	А	12.5
Continuous torque at standstill 100 K	M _{0_100}	Nm	24.0
Continuous current at standstill 100 K	I _{0_100(rms)}	А	14.3
Maximum torque	M_{max}	Nm	51.0
Maximum current	I _{max(rms)}	А	40.0
Torque constant at 20 °C	K _{M_N}	Nm/A	1.74
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min⁻¹	111.0
Winding resistance at 20 °C	R ₁₂	ohms	0.59
Winding inductivity	L ₁₂	mH	12.800
Discharge capacity of the component	C _{dis}	nF	1.5
Number of pole pairs	р	-	4
Moment of inertia of the rotor	J_{rot}	kg*m²	0.00442
Thermal time constant	T _{th}	min	25.0
Maximum speed	n _{max}	min⁻¹	4800
Sound pressure level	L _P	dB[A]	<75
Weight ²⁾	m	kg	18.0 (21.5)
Ambient temperature in operation	T_{amb}	°C	0 40
Type of protection according to IEC 60529		-	IP65
Insulation class according to DIN EN 60034-1		-	155
			Latest amendment: 2009-08-13

1) 2) Manufacturing tolerance ±5 %

(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...)

Fig.4-106:

MSK - Technical data

Characteristic Motor Curves

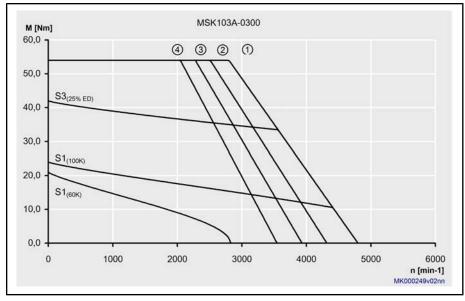


Fig.4-107: Characteristic curve MSK103A-0300

4.33 MSK103B - Technical Data

Designation	Symbol	Unit	MSK103B-0300-NN
UL Files (UL)			E335445
Continuous torque at standstill 60 K	M _{0_60}	Nm	28.0
Continuous current at standstill 60 K	I _{0_60(rms)}	A	17.0
Continuous torque at standstill 100 K	M _{0_100}	Nm	31.0
Continuous current at standstill 100 K	I _{0_100(rms)}	A	19.0
Maximum torque	M _{max}	Nm	85.0
Maximum current	I _{max(rms)}	A	63.0
Torque constant at 20 °C	K _{M_N}	Nm/A	1.76
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	108.0
Winding resistance at 20 °C	R ₁₂	ohms	0.36
Winding inductivity	L ₁₂	mH	8.000
Discharge capacity of the component	C _{dis}	nF	2.1
Number of pole pairs	р	-	4
Moment of inertia of the rotor	J _{rot}	kg*m ²	0.00594
Thermal time constant	T _{th}	min	27.0
Maximum speed	n _{max}	min ⁻¹	4,700
Sound pressure level	L _P	dB[A]	<75
Weight ²⁾	m	kg	22.5 (26.0)
Ambient temperature in operation	T _{amb}	°C	0 40
Type of protection according to IEC 60529		-	IP65
Insulation class according to DIN EN 60034-1		-	155
			Latest amendment: 2009-03-11

1) 2) Manufacturing tolerance ±5 %

(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...)

Fig.4-108:

MSK - Technical data

Characteristic Motor Curves

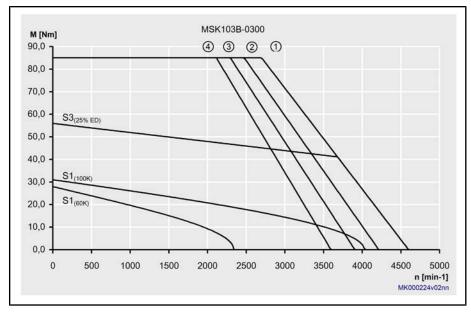


Fig.4-109: Characteristic curve MSK103B-0300

4.34 MSK103D - Technical Data

Designation	Symbol	Unit	MSK103D-0300-NN
UL Files (UL)			E335445
Continuous torque at standstill 60 K	M _{0_60}	Nm	46.0
Continuous current at standstill 60 K	I _{0_60(rms)}	А	26.3
Continuous torque at standstill 100 K	M _{0_100}	Nm	53.0
Continuous current at standstill 100 K	I _{0_100(rms)}	А	30.8
Maximum torque	M_{max}	Nm	138.0
Maximum current	I _{max(rms)}	А	94.7
Torque constant at 20 °C	K _{M_N}	Nm/A	1.84
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	113.0
Winding resistance at 20 °C	R ₁₂	ohms	0.20
Winding inductivity	L ₁₂	mH	4.870
Discharge capacity of the component	C _{dis}	nF	6.0
Number of pole pairs	р	-	4
Moment of inertia of the rotor	J _{rot}	kg*m²	0.00894
Thermal time constant	T _{th}	min	36.0
Maximum speed	n _{max}	min ⁻¹	4,600
Sound pressure level	L _P	dB[A]	<75
Weight ²⁾	m	kg	31.6 (36.1)
Ambient temperature in operation	T _{amb}	°C	0 40
Type of protection according to IEC 60529		-	IP65
Insulation class according to DIN EN 60034-1		-	155
			Latest amendment: 2009-03-11

1) 2) Manufacturing tolerance ±5 %

(...) Values for motors with holding brake, sorted (holding brake 1, holding brake 2 ...)

Fig.4-110:

MSK - Technical data

Characteristic Motor Curves

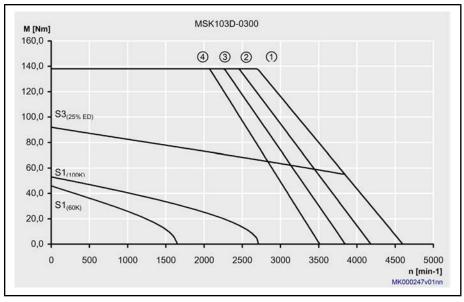


Fig.4-111: Characteristic curve MSK103D-0300

MSK131B - Technical Data 4.35

Designation	Symbol	Unit	MSK131B-0200-NN
UL Files (UL)			E335445
Continuous torque at standstill 60 K	M _{0_60}	Nm	85.0
Continuous current at standstill 60 K	I _{0_60(rms)}	А	36.7
Continuous torque at standstill 100 K	M _{0_100}	Nm	
Continuous current at standstill 100 K	I _{0_100(rms)}	А	
Continuous torque at standstill. surface	M _{0_S}	Nm	127.5
Continuous current at standstill. surface	I _{0_S(rms)}	А	55.1
Maximum torque	M _{max}	Nm	250.0
Maximum current	I _{max(rms)}	А	165.0
Torque constant at 20 °C	K _{M_N}	Nm/A	2.55
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min⁻¹	155.0
Winding resistance at 20 °C	R ₁₂	ohms	0.16
Winding inductivity	L ₁₂	mH	5.300
Discharge capacity of the component	C _{dis}	nF	14.3
Number of pole pairs	р	-	4
Moment of inertia of the rotor	J _{rot}	kg*m²	0.02320
Thermal time constant	T _{th}	min	50.0
Maximum speed	n _{max}	min⁻¹	3200
Sound pressure level	L _P	dB[A]	<75
Weight ²⁾	m	kg	84.0 (89.4)
Ambient temperature in operation	T _{amb}	°C	0 40
Type of protection according to IEC 60529		-	IP65
Insulation class according to DIN EN 60034-1		-	155
			Latest amendment: 2011-02-15

1) 2) Manufacturing tolerance ±5 %

(...) Values for motors with holding brake, sorted (holding brake 1, hold-ing brake 2 ...)

Fig.4-112:

MSK - Technical data

Characteristic Motor Curves

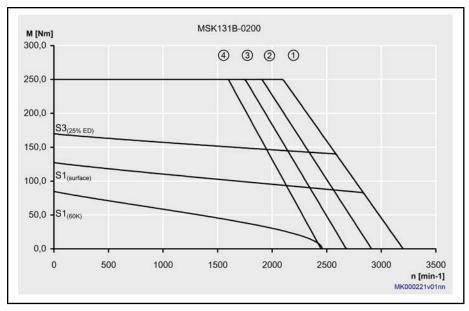


Fig.4-113: Characteristic curve MSK131B-0200

MSK131D - Technical Data 4.36

Designation	Symbol	Unit	MSK131D-0200-NN
UL Files (UL)			E335445
Continuous torque at standstill 60 K	M _{0_60}	Nm	160.0
Continuous current at standstill 60 K	I _{0_60(rms)}	А	65.2
Continuous torque at standstill 100 K	M _{0_100}	Nm	
Continuous current at standstill 100 K	I _{0_100(rms)}	А	
Continuous torque at standstill. surface	M _{0_S}	Nm	240.0
Continuous current at standstill. surface	I _{0_S(rms)}	А	97.8
Maximum torque	M _{max}	Nm	495.0
Maximum current	I _{max(rms)}	А	293.4
Torque constant at 20 °C	K _{M_N}	Nm/A	2.70
Voltage constant at 20 °C ¹⁾	K _{EMK_1000}	V/min ⁻¹	170.0
Winding resistance at 20 °C	R ₁₂	ohms	0.08
Winding inductivity	L ₁₂	mH	3.000
Discharge capacity of the component	C _{dis}	nF	27.7
Number of pole pairs	р	-	4
Moment of inertia of the rotor	J _{rot}	kg*m²	0.03820
Thermal time constant	T _{th}	min	64.0
Maximum speed	n _{max}	min⁻¹	3,000
Sound pressure level	L _P	dB[A]	<75
Weight ²⁾	m	kg	116.0 (121.4) (128.0)
Ambient temperature in operation	T _{amb}	°C	0 40
Type of protection according to IEC 60529	IP	-	IP65
Temperature class according to DIN EN 60034-1	I.CL.	-	155
			Latest amendment: 2011-02-11

1) 2) Manufacturing tolerance ±5 %

(...) Values for motors with holding brake, sorted (holding brake 1, hold-ing brake 2 ...)

Fig.4-114:

MSK - Technical data

Characteristic Motor Curves

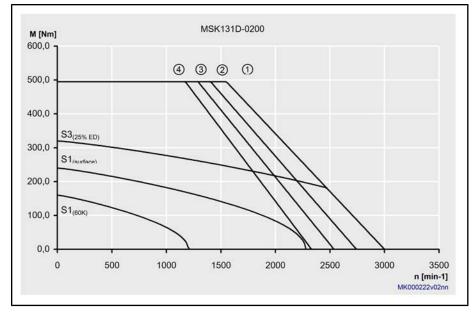


Fig.4-115: Characteristic curve MSK131D-0200

5 Specifications

5.1 Technical Design

Motor Design

Housing painting

Vibration Severity Grade (Quality of Vibration)

Concentricity, run-out and alignment

according to DIN 42955, Edition 12.81 (IEC 60072-1)

9.3 "Design and Installation Positions" on page 213)

		,	,	
Encoder	Concentricity tolerance		Run-out and alignment tolerance	
S1, S3, M1, M3	Ν		Ν	
S2, M2		R		R

Motor frame size B5 acc. to EN60034-7 (for additional information see chapter

Fig.5-1: Tolerance for concentricity, run-out and alignment dependend from the encoder option

Flange

Output shaft, shaft end and centering hole according to DIN 42948, ed. 11.65.

Level A, acc. to EN 60034-14:2004

Black (RAL 9005)

All motors with keyway are balanced with **complete** key. The machine element to be driven must be balanced without a key.

Shaft end cylindrical according to DIN 748, Part 3, ed. 07.75. IEC 60072 (-1). Centering hole, according to DIN 332 Part 2, Edition 05.83

Motor	Corresponding key accord- ing to DIN 6885-A (does not belong to scope of delivery of the motors)	Centering hole , according to DIN 332 Part 2, Edition 05.83	
MSK030	3×3×16	DS M3	
MSK040	5×5 ×20	DS M5	
MSK043 1)	5×5 ×20	DS M5	
MSK050	6×6×32	DS M6	
MSK060	8×7×40	DS M8	
MSK061	6×6×32	DS M6	
MSK070	10×8×45	DS M10	
MSK071	10×8×45	DS M10	
MSK075 1)	10×8×45	DS M10	
MSK076	8×7×40	DS M8	
MSK100	10×8×45	DS M10	
MSK101	10×8×70	DS M12	
MSK103 ¹⁾	-	DS M12	
MSK131 ¹⁾	14×10×80	DS M16	

Motor not available in ATEX design

Fig.5-2:

1)

Key and centering hole

5.2 MSK030 Specifications

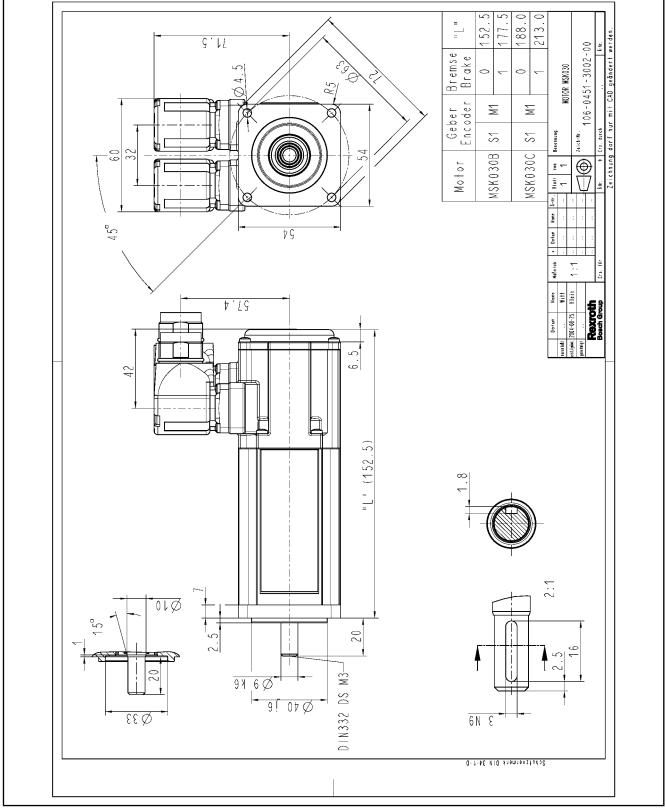


Fig.5-3: MSK030 specifications

5.3 MSK040 Specifications

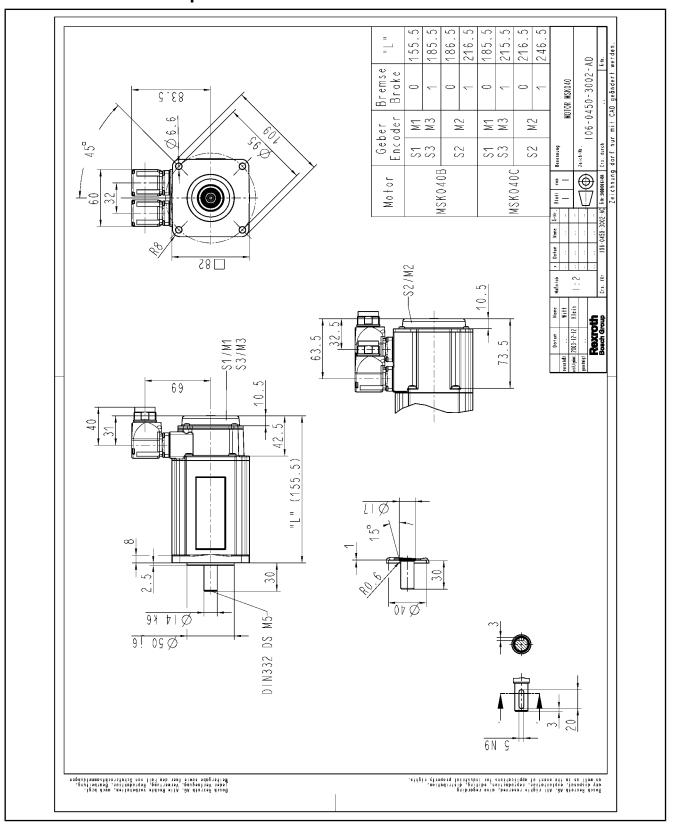


Fig.5-4: MSK040 specifications

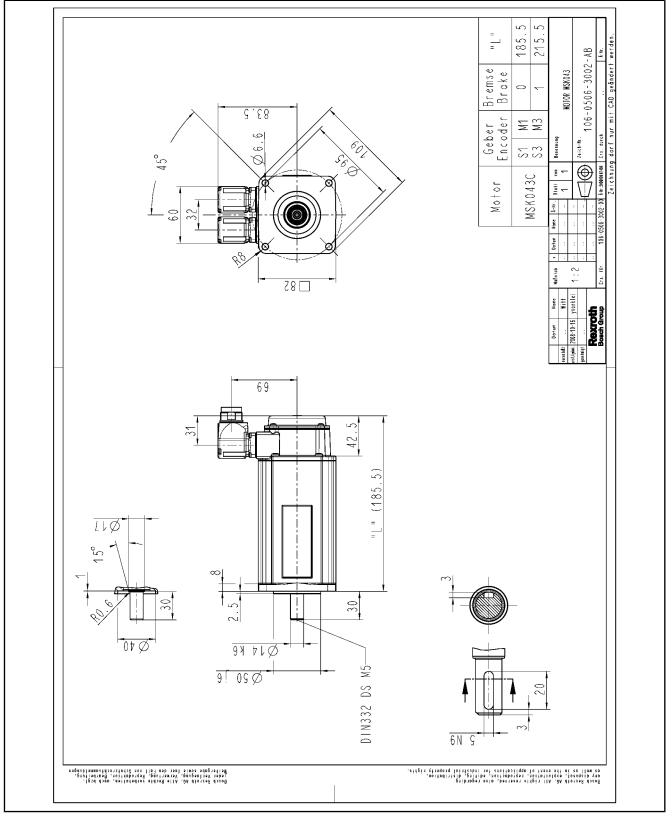
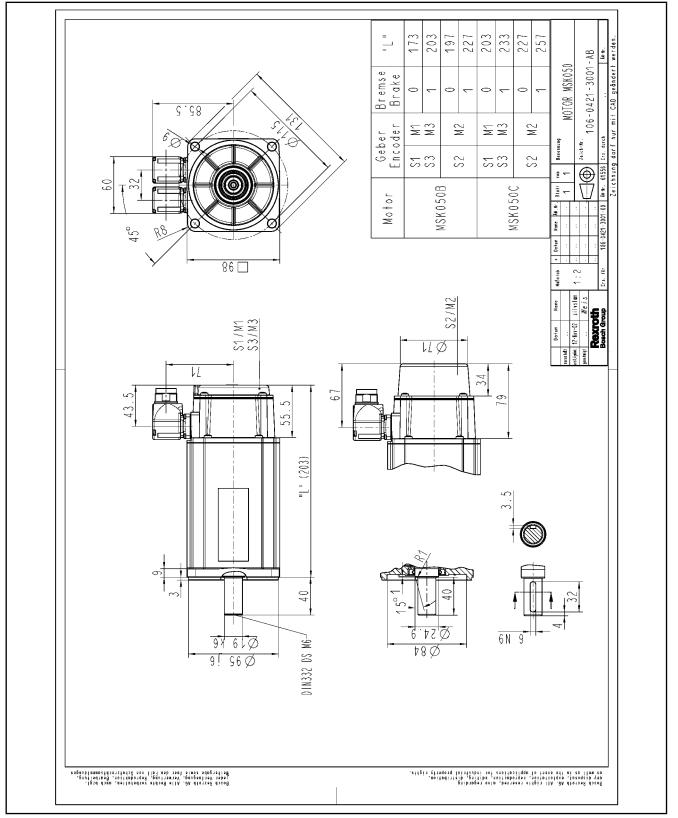



Fig.5-5: MSK043 specifications

5.5 MSK050 Specifications

Fig.5-6: MSK050 specifications

5.6 MSK060 Specifications

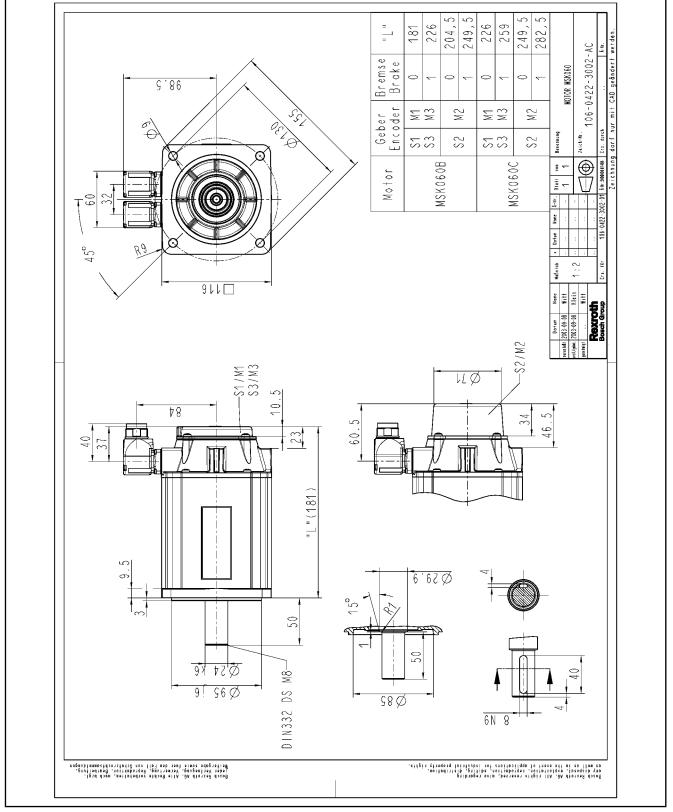


Fig.5-7: MSK060 specifications

5.7 MSK060 Specifications Fan Unit Axial

Fig.5-8: MSK060 specifications with axial fan unit

5.8 MSK060 Specifications Fan Unit Radial

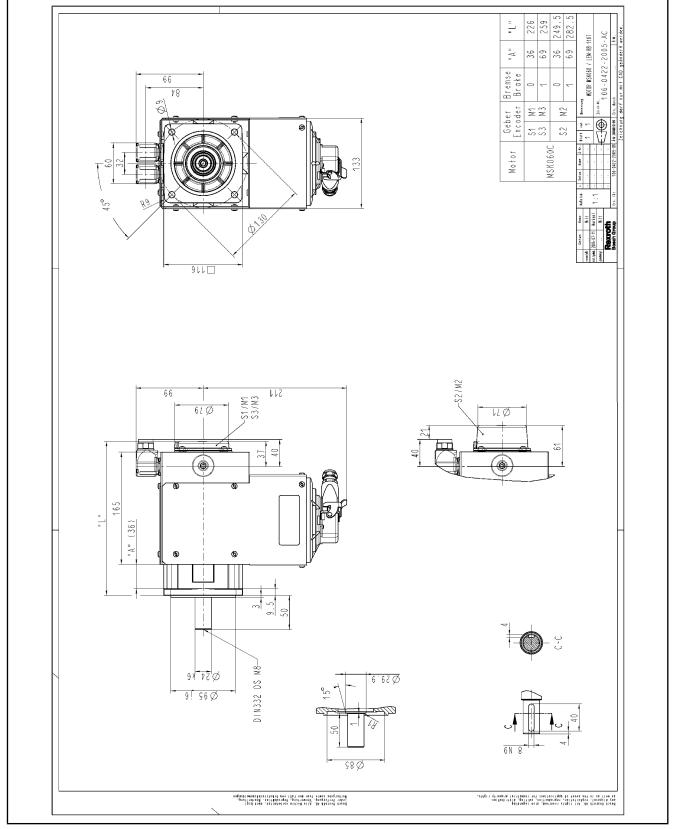


Fig.5-9: MSK060 specifications with radial fan unit

5.9 MSK061 Specifications

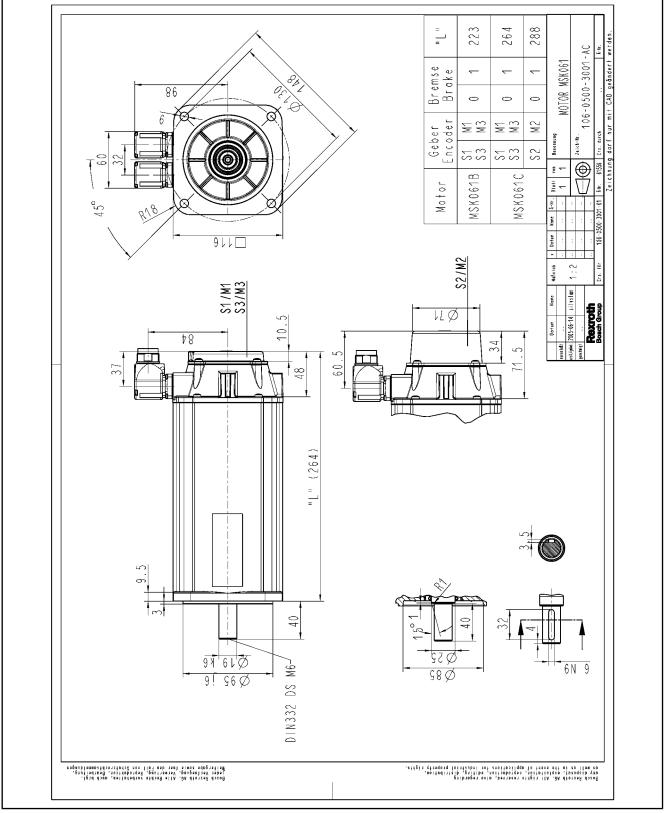


Fig.5-10: MSK061 specifications

5.10 MSK061 Specifications Fan Unit Axial

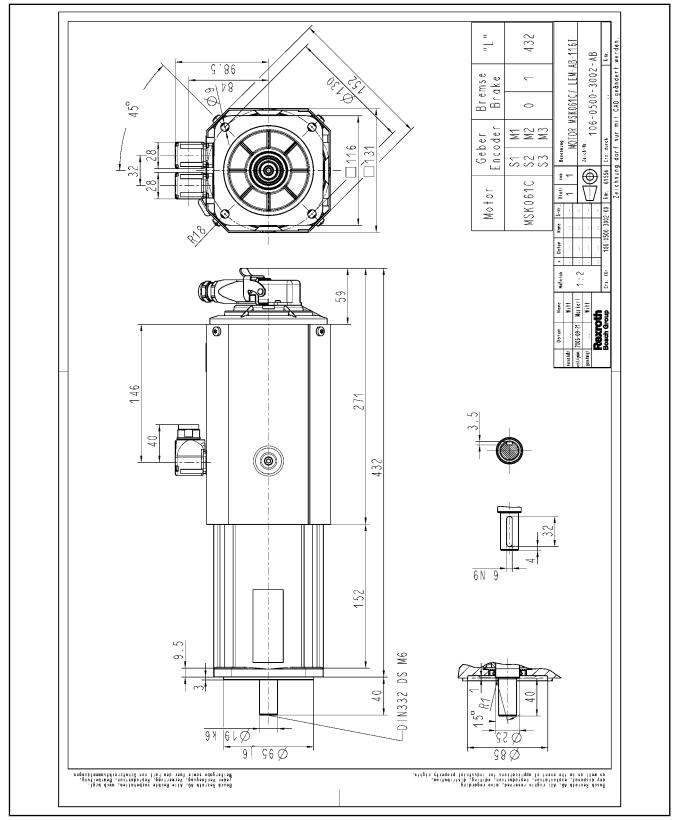
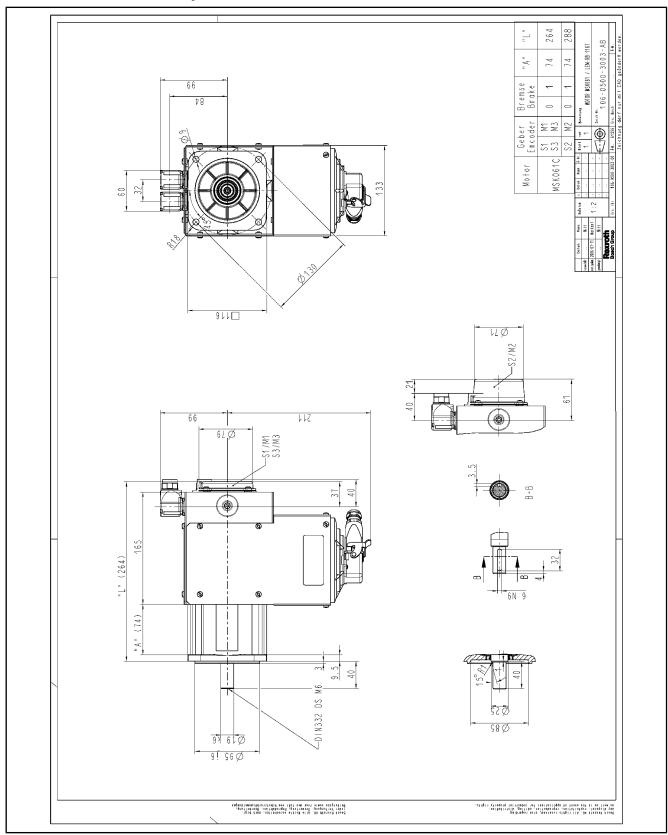



Fig.5-11: MSK061 specifications with axial fan unit

5.11 MSK061 Specifications Fan Unit Radial

Fig.5-12: MSK061 specifications with radial fan unit

5.12 MSK070 Specifications

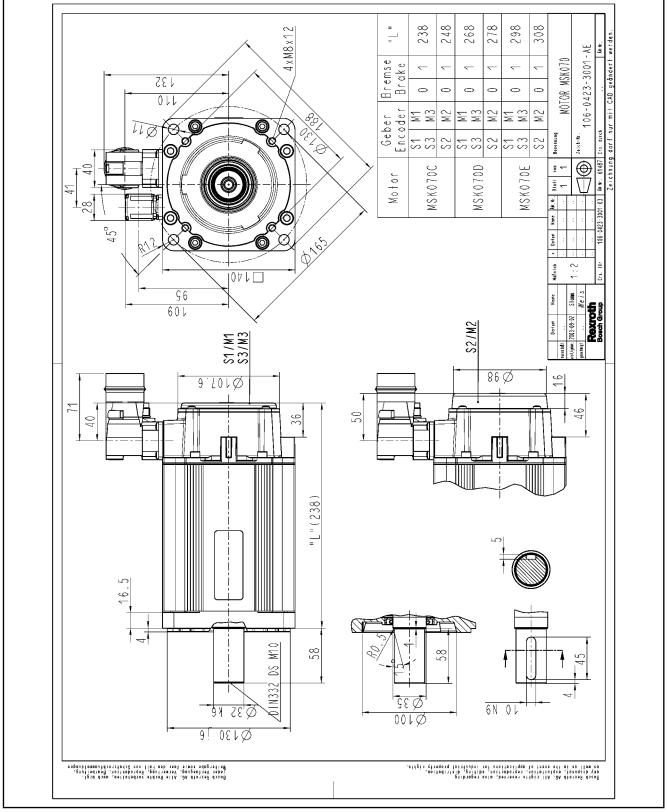
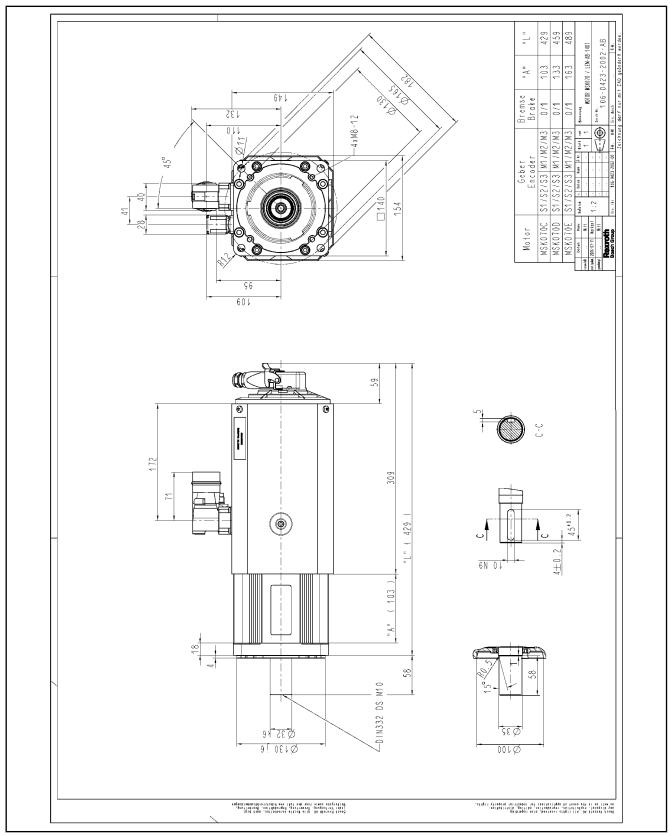



Fig.5-13: MSK070 specifications

5.13 MSK070 Specifications Fan Unit Axial

Fig.5-14: MSK070 specifications with axial fan unit

5.14 MSK070 Specifications Fan Unit Radial

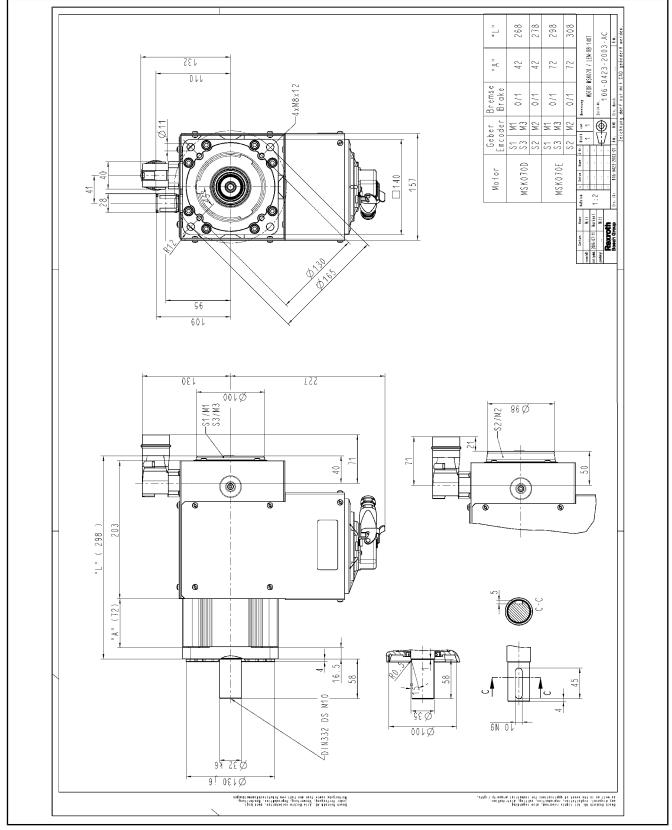


Fig.5-15: MSK070 specifications with radial fan unit

5.15 MSK071 Specifications

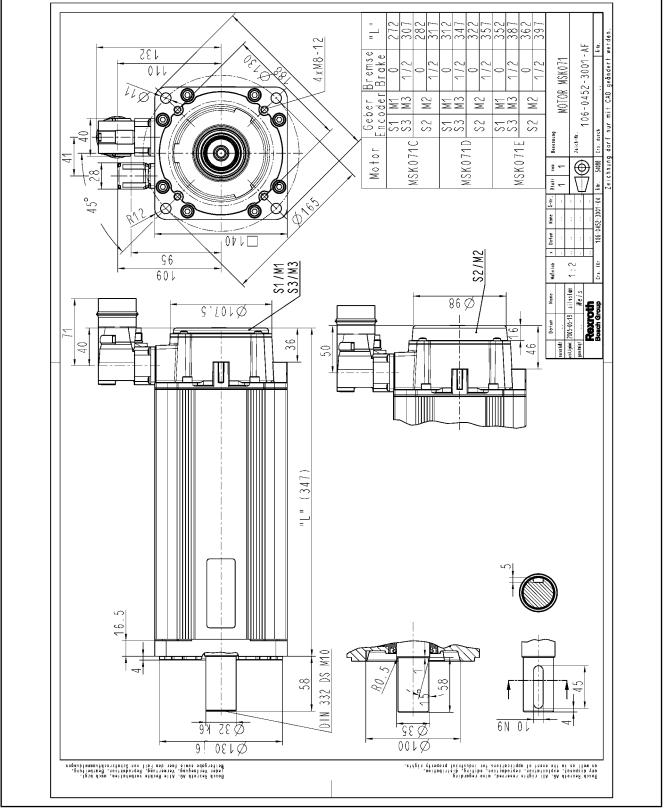


Fig.5-16: MSK071...NN specifications

5.16 MSK071 Specifications Liquid Cooling

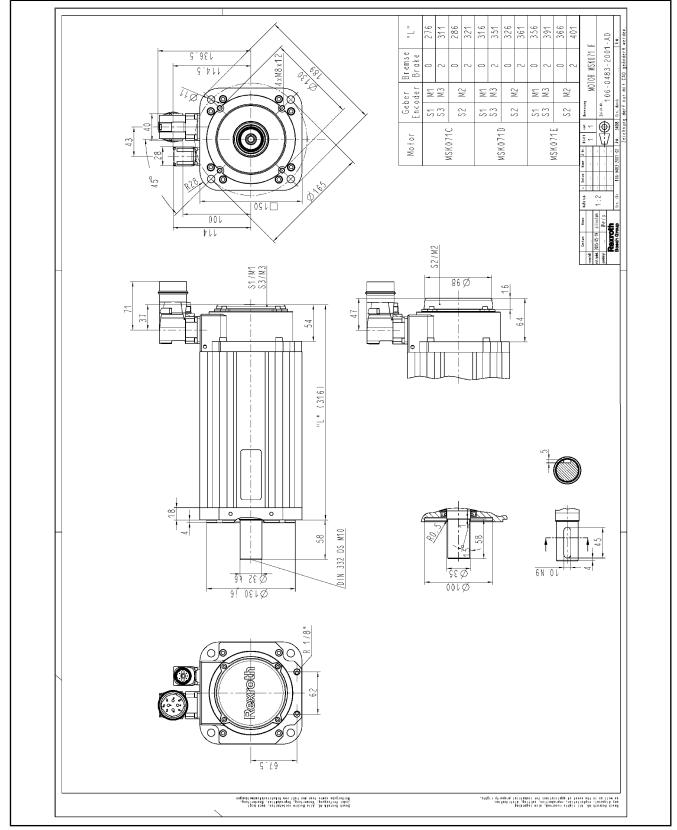
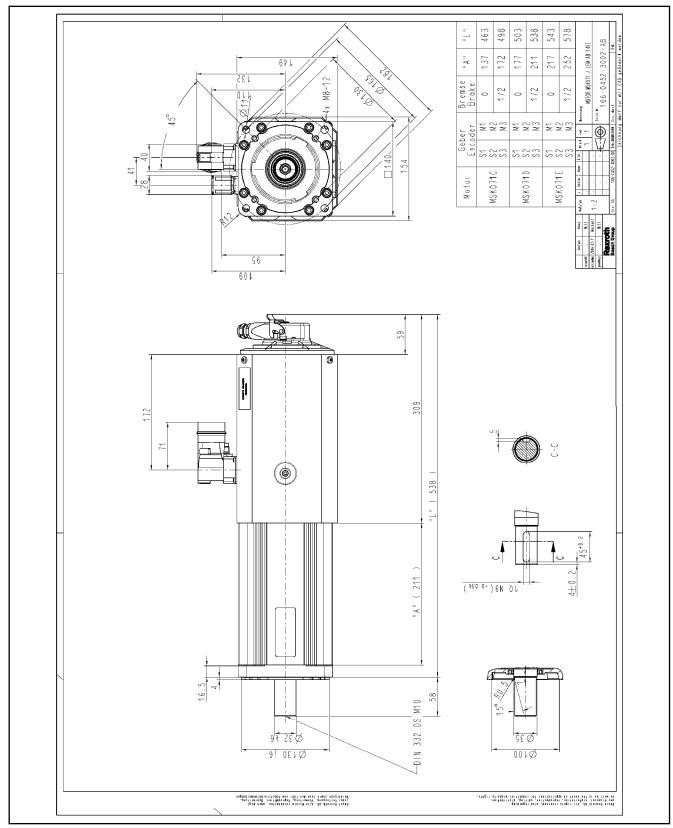



Fig.5-17: MSK071...FN specifications

5.17 MSK071 Specifications Fan Unit Axial

Fig.5-18: MSK071 specifications with axial fan unit

5.18 MSK071 Specifications Fan Unit Radial

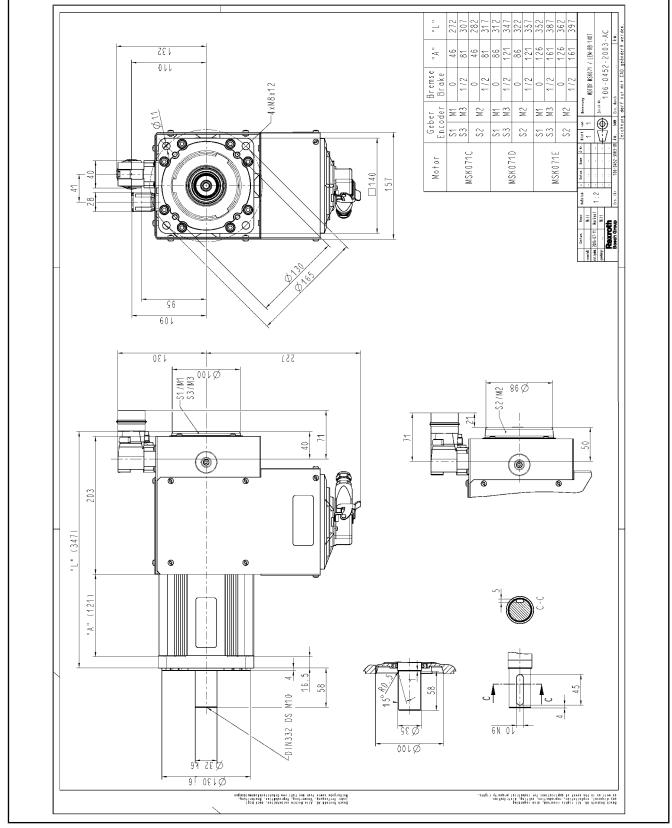


Fig.5-19: MSK071 specifications with radial fan unit

5.19 MSK075 Specifications

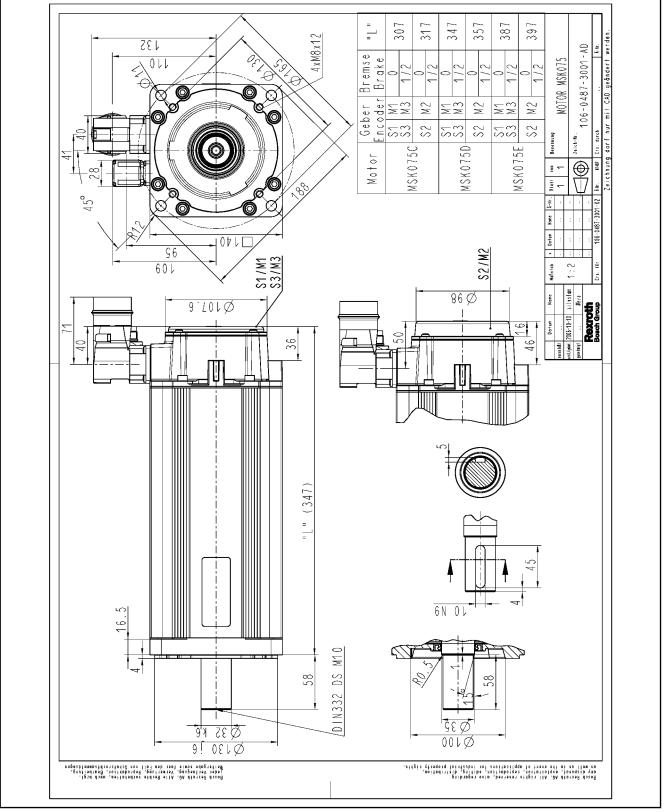


Fig.5-20: MSK075...NN specifications

5.20 MSK075 Specifications Liquid Cooling

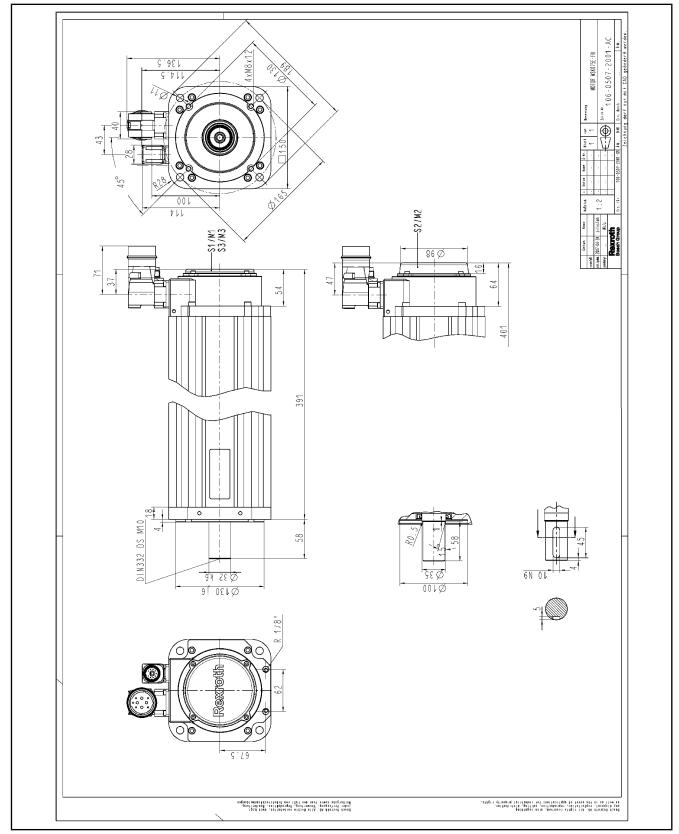
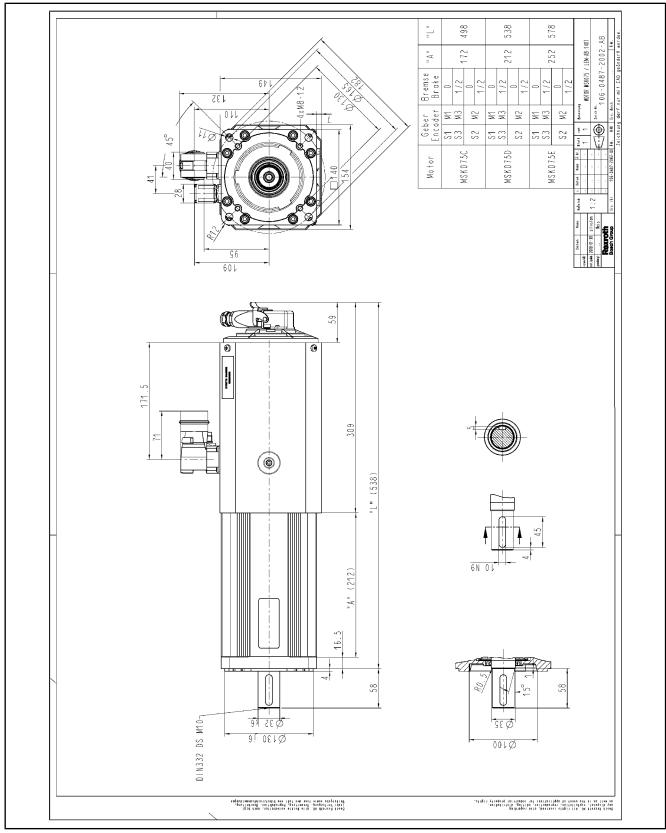



Fig.5-21: MSK075...FN specifications

5.21 MSK075 Specifications Fan Unit Axial

Fig.5-22: MSK075 specifications with axial fan unit

5.22 MSK075 Specifications Fan Unit Radial

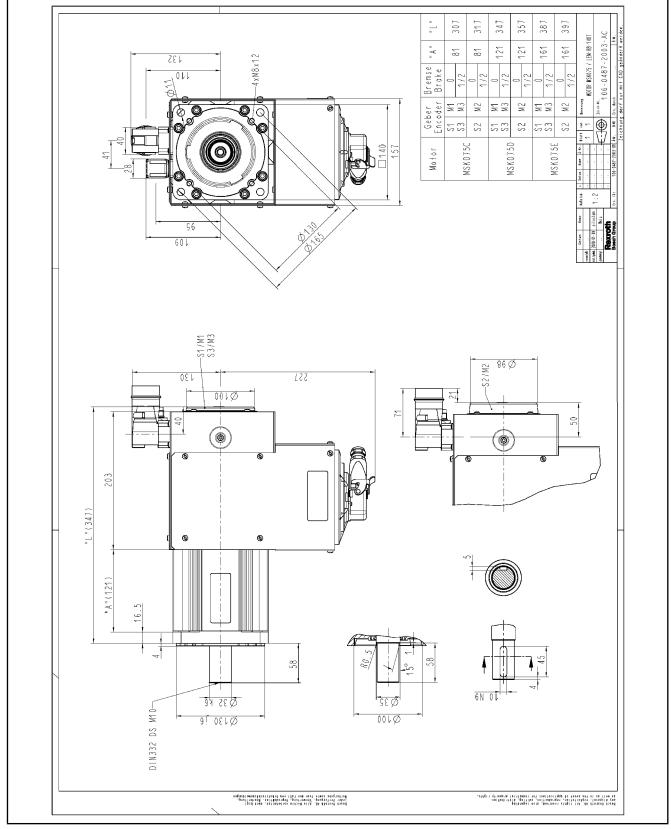


Fig.5-23: MSK075 specifications with radial fan unit

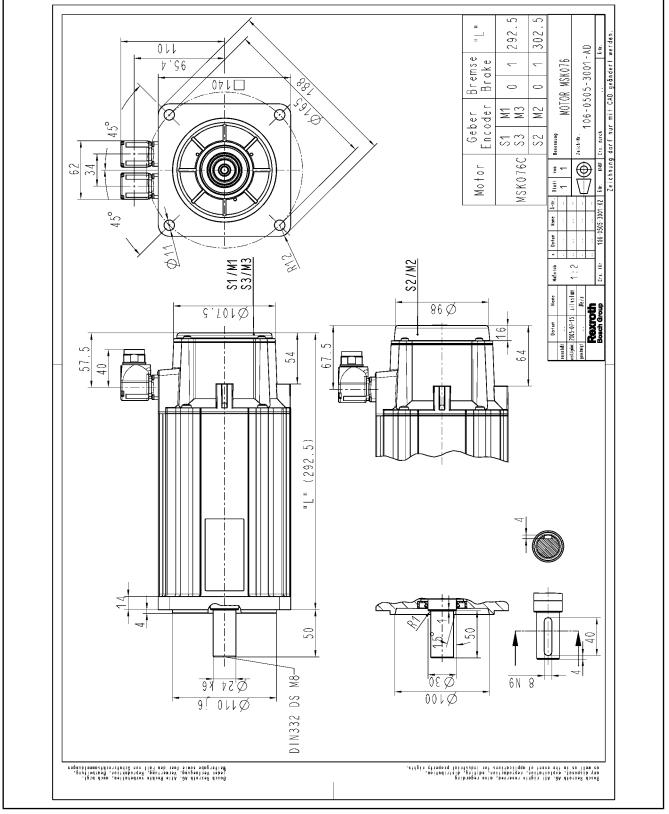


Fig.5-24: MSK076 specifications

5.24 MSK076 Specifications Fan Unit Axial

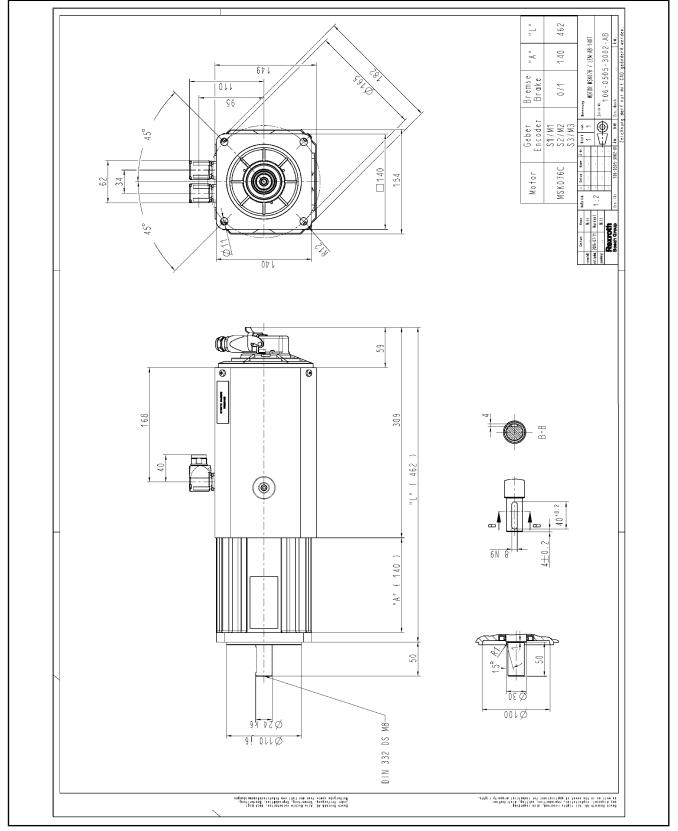
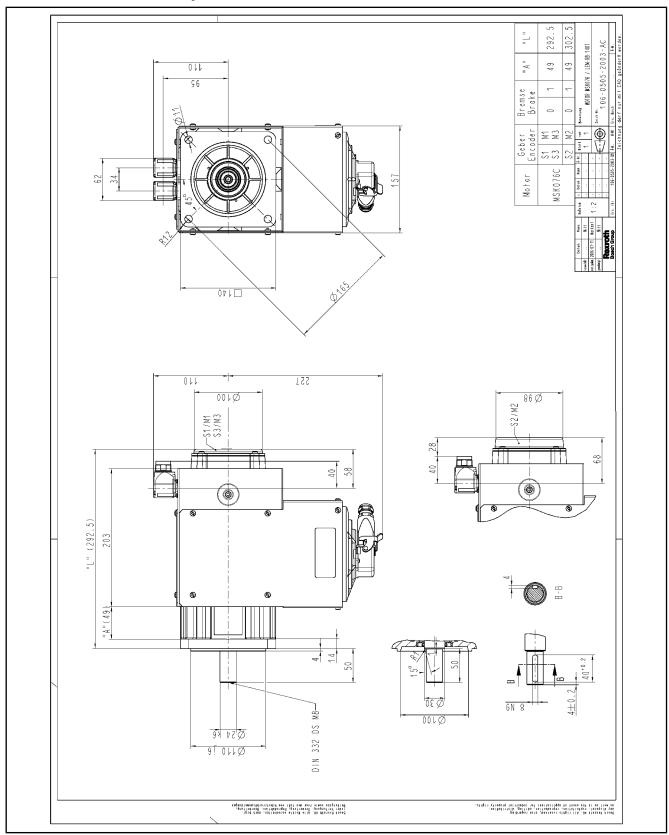



Fig.5-25: MSK076 specifications with axial fan unit

5.25 MSK076 Specifications Fan Unit Radial

Fig.5-26: MSK076 specifications with radial fan unit

5.26 MSK100 Specifications

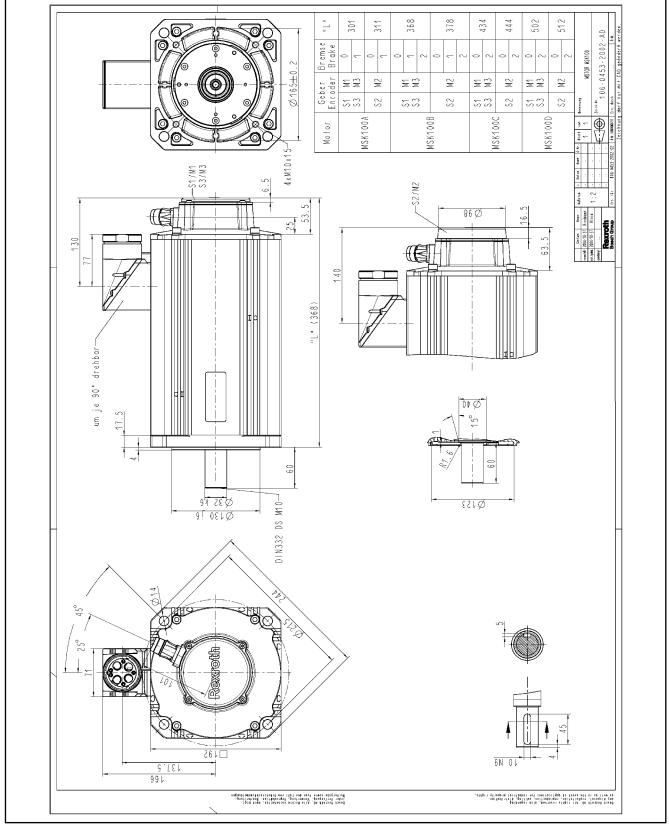
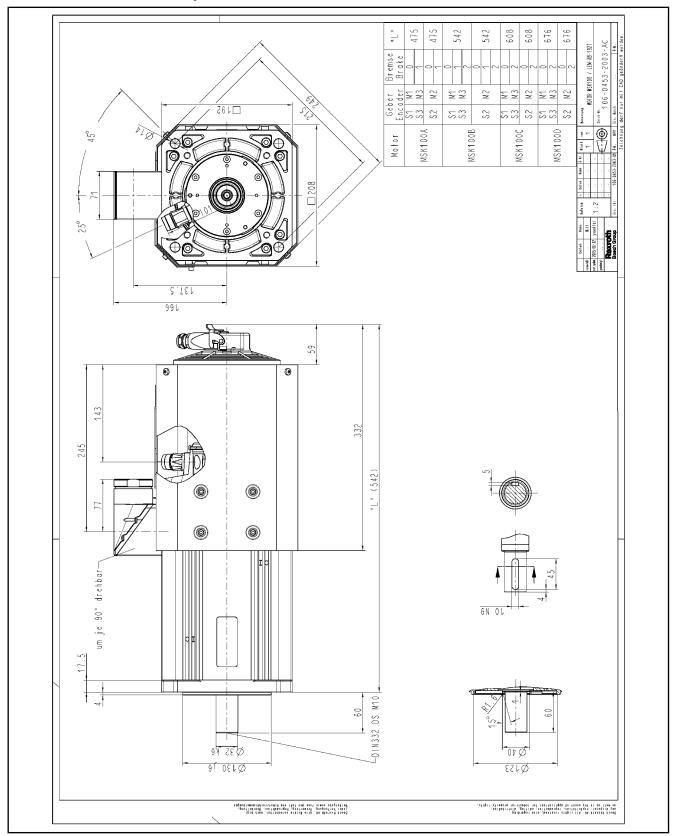



Fig.5-27: MSK100 specifications

5.27 MSK100 Specifications Fan Unit Axial

Fig.5-28: MSK100 specifications with axial fan unit

5.28 MSK100 Specifications Fan Unit Radial

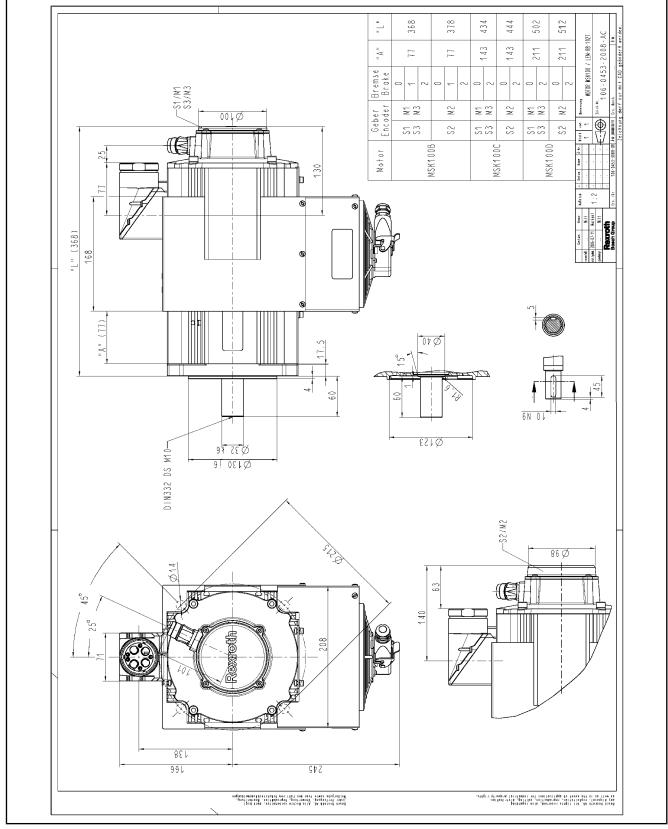


Fig.5-29: MSK100 specifications with radial fan unit

5.29 MSK101 Specifications

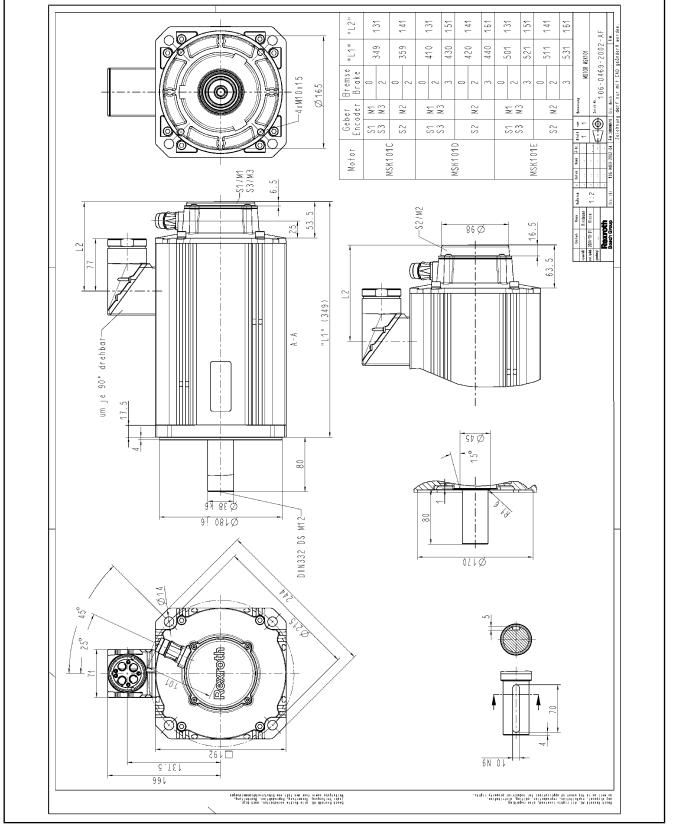


Fig.5-30: MSK101 specifications

5.30 MSK101 Specifications Liquid Cooling

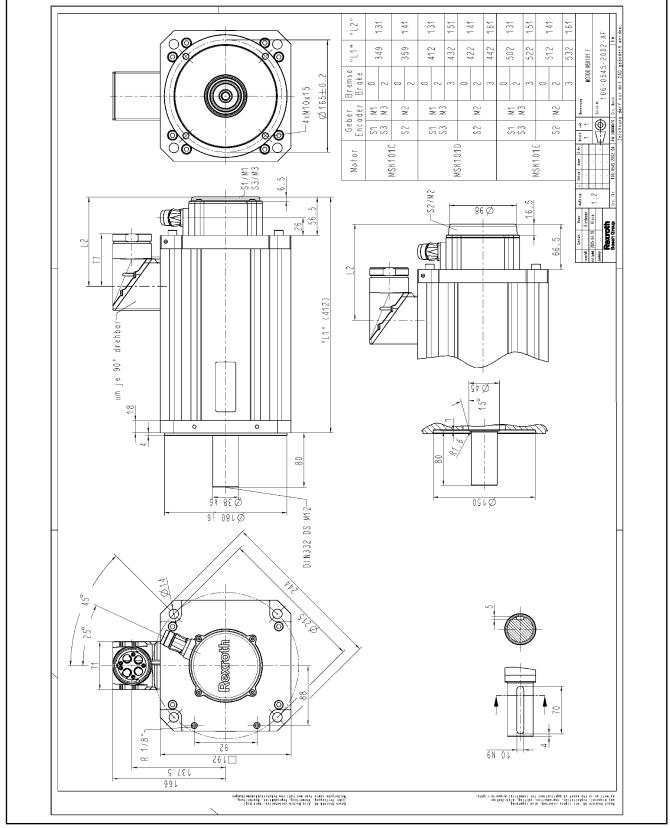
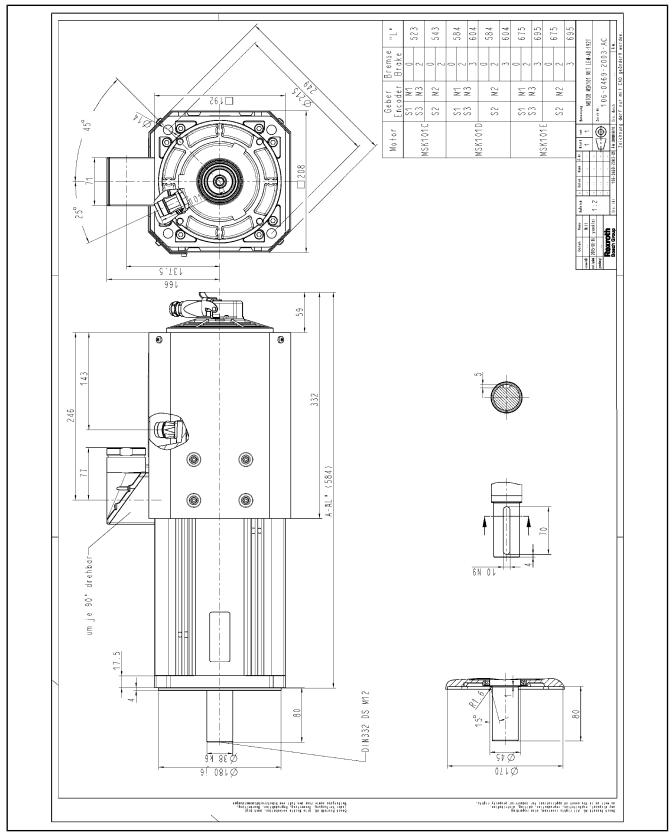



Fig.5-31: MSK101...FN specifications

5.31 MSK101 Specifications Fan Unit Axial

Fig.5-32: MSK101 specifications with axial fan unit

5.32 MSK101 Specifications Fan Unit Radial

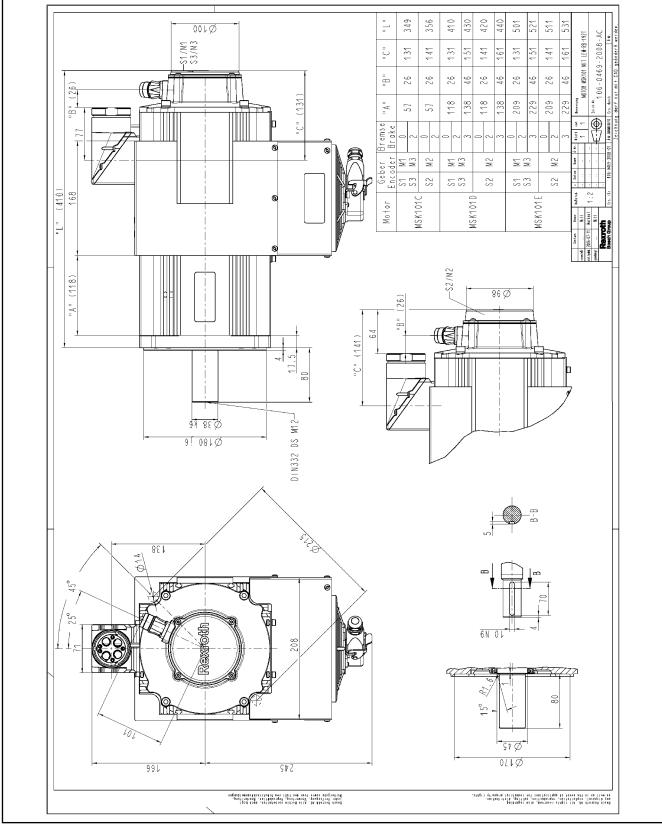


Fig.5-33: MSK101 specifications with radial fan unit

5.33 MSK103 Specifications

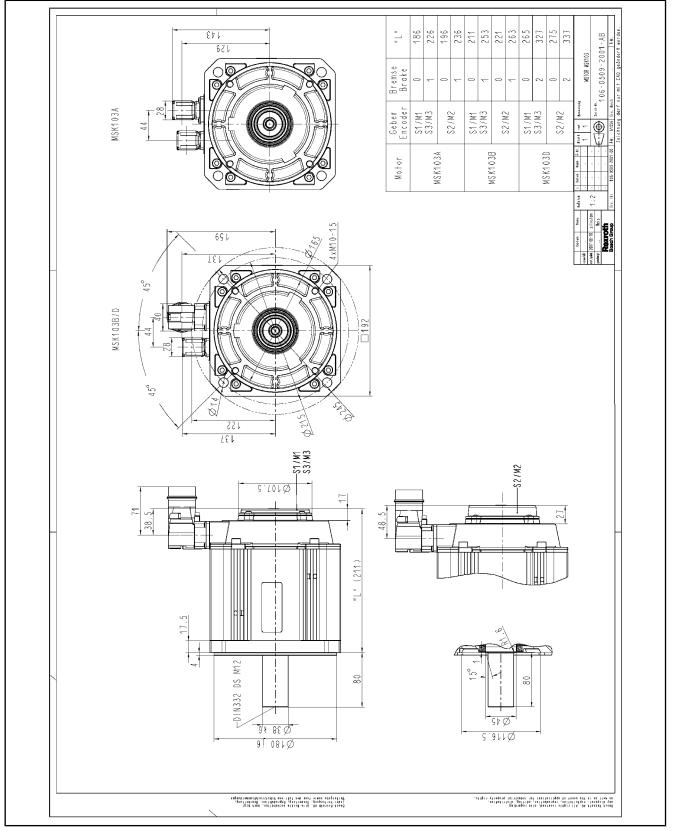
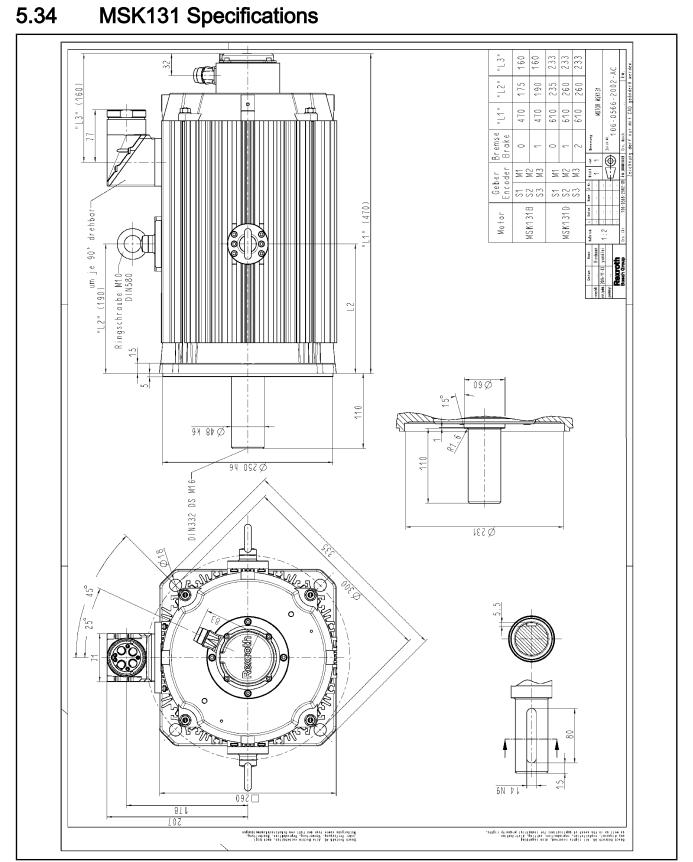
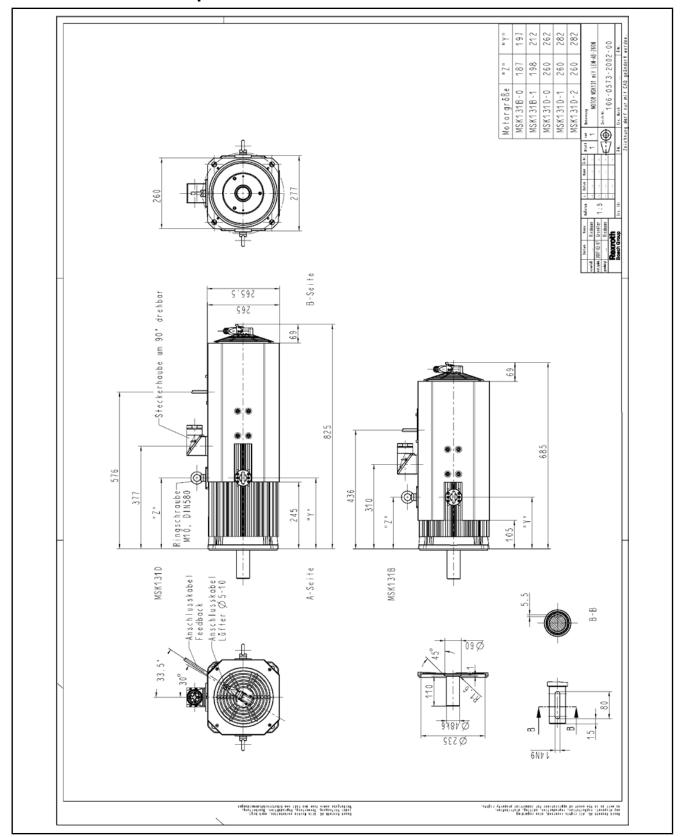




Fig.5-34: MSK103 specifications

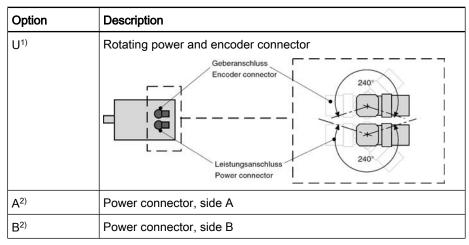
Fig.5-35: MSK131 specifications

5.35 MSK131 Specifications Fan Unit Axial

Fig.5-36: MSK131 specifications with axial fan unit

6 Type Codes

6.1 MSK Type Code - Structure and Description


General Information	motor vari	iants are uniquely describ	ist be based on the type code. All available ed by their type code. The individual char- column) and their meaning are described
	R	Before ordering, please tions with your Bosch Re	check the availability of the separate op- exroth sales partner.
Product	Example:	MSK]-00-000-0000
	MSK thre	e-digit Rexroth-specific de	esignation of a servomotor series.
Frame size	Example:	MSK050	
		r size determines importa al to the performance var	nt mechanical motor specifications and is iables.
Frame Length	Example:	MSK050 B -	
			e increasing motor length is indicated by ID engths are, for example, B, C, D and E.
Winding	Example:	MSK050B-0300-00-00	-000-0000
		digit sequence of figures io type of winding.	dentifies the rated speed applicable for the
Cooling Type	Example:	MSK050B-0300-NN-	
	Option	Design	Detail
	NN	Natural Convection	Fan mounting possible ¹⁾

FN	0	Standard connection for coolant ducts 1/8", fan mounting not possible
1) <i>Fig.6-1:</i>	Not admissible for ATEX Cooling types for IndraL	

Encoder Example: MSK050B-0300-NN-S1-

IndraDyn S motors are equipped with integrated encoder system. To control the motor speed and / or to position the motor, the drive control device must know the current motor position.

Electrical Connection Example: MSK050B-0300-NN-S1-U

Option	Description
L ²⁾	Power connector, to the left
R ²⁾	Power connector, to the right
1)	for MSK030040043050060070071075076103 motors

for MSK100, -101, -131 motors

Fig.6-2: IndraDyn S connectors with fixed output direction

Drive shaft

2)

Example: MSK050B-0300-NN-S1-UG

In order to connect the machine elements to be driven to the motor drive shafts, the following options are available for all IndraDyn S motors:

Option	Design	Detail
G	Plain shaft	With frontal centering hole with "DS" thread
Р	Shaft with keyway ¹⁾	according to DIN 332, Part 2, Edition 05.83
1) Konneou	according to DIN 6995 about 1	ad 09 69 Eardataila refer to the dimension

1) Keyway according to DIN 6885, sheet 1, ed. 08.68. For details, refer to the dimension sheets.

Fig.6-3: IndraDyn S output shafts

IndraDyn S motors are balanced with a key. The related key is not included in the scope of delivery.

Holding brake

Example: MSK050B-0300-NN-S1-UG1-

As an option, IndraDyn S motors are available with electrically releasing holding brakes with various holding torques.

Option		Holding Brakes
0	Without holding brake	
1, 2, 3	With holding brake	The holding torques are specified in the motor type codes.

Fig.6-4: IndraDyn S holding brakes

The holding brake is not suitable for the protection of personnel or as a service brake! Please also observe the installation and safety instructions on the motor holding brakes in the chapter entitled "Application Notes".

Design Example: MSK050B-0300-NN-S1-UG1-NNNN

NNNN = standard design

NSNN = standard and explosion protection design according to equipment group II, categories 3G and 3D according to DIN EN 60079 et seqq.

RNNN = design with increased concentricity

RSNN = design with increased concentricity and explosion protection design according to equipment group II, categories 3G and 3D according to DIN EN 60079 et seqq.

Reference to Standards The item "Reference to Standards" indicates standards referred to in the type code (e.g. DIN, EN, ISO, etc.) or factory standards (RNC ...) that are also applicable. The version listed is always that valid at the time the type code is issued.

Comment Please refer to this item for additionally required information concerning the handling of the type code. This includes, for example, descriptions on footnotes or notes on availability.

6.2 MSK030 Type Code

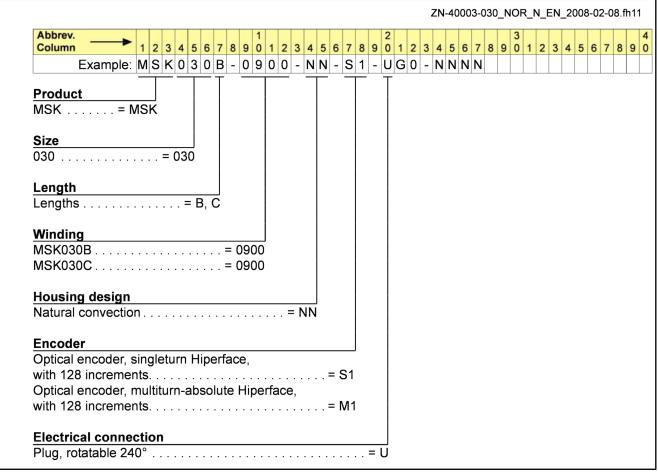


Fig.6-5: MSK030 type code (page 1)

Abbrev.	234567	1 3 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
Example: M	SK030B	8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
Shaft		
Plain shaft with shaft	t sealing ring	(standard)=G
		i with shaft sealing ring = P
, , ,		
Holding brake		
Without holding brak	е	
		1 Nm = 1
		1 Nm = 0
Holding brake, electr	rical release,	1 Nm
Holding brake, electr Other design	rical release,	1 Nm = 1
Holding brake, electr Other design Standard	rical release,	1 Nm
Holding brake, electr Other design Standard Standard and Ex typ	rical release,	1 Nm = 1
Holding brake, electr Other design Standard Standard and Ex typ	rical release,	1 Nm
Holding brake, electr Other design Standard Standard and Ex typ	rical release,	1 Nm = 1
Holding brake, electr Other design Standard Standard and Ex typ	rical release,	1 Nm = 1
Holding brake, electr Other design Standard Standard and Ex typ on DIN EN 60079 ff	rical release,	1 Nm = 1
Holding brake, electr Other design Standard Standard and Ex typ on DIN EN 60079 ff Standard reference	rical release, e for cluster l Edition	1 Nm = 1 = NNNN II, categories 3G and 3D = NSNN
Holding brake, electr Other design Standard Standard and Ex typ on DIN EN 60079 ff Standard reference Standard	rical release, e for cluster l Edition	1 Nm = 1 = NNNN II, categories 3G and 3D = NSNN Title Drive Type Fastenings without Taper Action; Parallel Keys,
Holding brake, electr Other design Standard Standard and Ex typ on DIN EN 60079 ff Standard reference Standard	rical release, e for cluster l Edition	1 Nm = 1

6.3 MSK040 Type Code

														Z	N-4	000	3-0	40_I	NOR	R_N_	EN_	_201	0-06	6-18	.fh1
Abbrev.	▶ 1	2 3	4 5	6 7	7 8	1 9 0	1 2	3 4	4 5	6 7	8 9	2	1 2	3	4 5	6	7	8 9	3	1 2	3	4 5	6	7 8	3 9
Examp																									
Product MSK =	MSK			T			_		_																
Size		- 04																							
		- 04	0																						
Length		=	= B,	C																					
\ A /in dia a																									
MSK040B		:	= 04	150,	060	00																			
MSK040C																									
Cooling mode																									
Cooling mode Natural convection	on						. = N	IN																	
Encoder																									
Optical encoder,									~																
								• • •	. = 8	51															
with 128 increme			- 11	Jall	<u>с.</u> г,																				
with 128 increme Optical encoder,									- 9	22															
with 128 increme Optical encoder, with 2048 increm	nents							•••	. = 8	52															
with 128 increme Optical encoder, with 2048 increm Capacitive encoder	nents der, sin	 glet	urn	 Hip	erfa	 ce,					1														
with 128 increme Optical encoder, with 2048 increm Capacitive encod with 16 incremen	nents der, sin nts	glet	 urn	Hip	erfa	 ce, 					1														
with 128 increme Optical encoder, with 2048 increm Capacitive encod with 16 incremen Optical encoder,	nents der, sin nts multitu	iglet 	urn abso	Hip Hip	erfa Hip	ce, ce, oerfa	се,		. = S	\$3	1														
with 128 increme Optical encoder, with 2048 increm Capacitive encoder with 16 incremen Optical encoder, with 128 increment	nents der, sin nts multitu ents	iglet 	urn abso	Hip III	erfa Hip	ce, perfa	ce,		. = S	\$3	1														
with 128 increme Optical encoder, with 2048 increm Capacitive encod with 16 incremen Optical encoder, with 128 increme Optical encoder,	nents der, sin nts multitu ents multitu	iglet urn-a urn-a	absc	Hip Inte	erfa e Hip e En	ce, berfa	ce, 		. = S . = N	SЗ И1	1														
with 128 increme Optical encoder, with 2048 increm Capacitive encoder, with 16 incremen Optical encoder, with 128 increme Optical encoder, with 2048 increment	nents der, sin nts multitu ents multitu nents	iglet urn-a urn-a	absc	Hip Iute	erfa Hip E Hip	ce, berfa Dat2	ce, 		. = S . = N	SЗ И1	1														
with 128 increme Optical encoder, with 2048 increm	nents der, sin multitu ents multitu nents der, mu	urn-a	abso	Hip olute olute	erfa Hip En 	ce, perfa Dat2	ce, 	 	. = S . = N . = N	SЗ И1 И2															
with 128 increme Optical encoder, with 2048 increm Capacitive encoder with 16 incremen Optical encoder, with 128 increme Optical encoder, with 2048 increment Capacitive encoder	nents der, sin multitu ents multitu nents der, mu nts	urn-a	abso	Hip Jute	erfa e Hip e En 	ce, perfa Dat2	ce, 	 	. = S . = N . = N . = N	SЗ И1 И2															

Fig.6-7: MSK040 type code (page 1)

Column	1 2 3 4 5 6	7 8 9	1	23	4 5	6	7	8	9 0	2	2	3	4	5 1	6 7	8		3	2	3	4 5	6	7	8
	MSK040													-			-		-					-
·										T	Ť					•								
Shaft	<u> </u>																							
Plain shaft with sh			ndaro	d)		• •		•••	. =	G														
Shaft with key per									_	Б														
shaft sealing ring				••••		• •	• •	•••	. =	Р														
Holding brake																								
Without holding br	ako									=														
Holding brake, ele																								
Other design																								
											=	N	NΝ	N										
Standard								• •		• • •	• -		••••											
Standard and Ex t									•••	•••	• _													
	ype for cluste	r II, ca	itego	ries	3G a	and	3 Z)																
Standard and Ex t	ype for cluste	r II, ca	itego	ries	3G a	and	3 Z)																
Standard and Ex t on DIN EN 60079 Note:	ype for cluste ff	r II, ca 	itego	ries :	3G a 	anc	3 3 E) 			. =	NS	SN											
Standard and Ex t on DIN EN 60079	ype for cluste ff	r II, ca 	itego	ries :	3G a 	anc	3 3 E) 			. =	NS	SN											
Standard and Ex t on DIN EN 60079 Note:	ype for cluste ff	r II, ca 	itego	ries :	3G a 	anc	3 3 E) 			. =	NS	SN											
Standard and Ex t on DIN EN 60079 Note: 1 Encoder "S3" a	ype for cluste ff and "M3" are o	r II, ca 	itego	ries :	3G a 	anc	3 3 E) 			. =	NS	SN											
Standard and Ex t on DIN EN 60079 Note: 1 Encoder "S3" a Standard referen	ype for cluste ff and "M3" are o ce	r II, ca	itego 	ries : 	3G a 	anc	3 3 E) 			. =	NS	SN											
Standard and Ex t on DIN EN 60079 Note: 1 Encoder "S3" a Standard referen Standard	ype for cluste ff and "M3" are c and Title	r II, ca only av E	itego vailat ditio	ries : ole w n	3G a	anc	d 3E er d) les		ייר	. = NNI	N	1" 3N	N	ctio	n.	Pa	rall		(ev	9			
Standard and Ex t on DIN EN 60079 Note: 1 Encoder "S3" a Standard referen	ype for cluste ff and "M3" are c and Title	r II, ca only av E D	vailat ditio	ries : ble w n Type	3G a vith c	anc othe	a 30 er d) Jes	 sigr	ייר	. = NNI	N	1" 3N	N	ctio	n;	Pa	rall	el f	۲ey	S,			
Standard and Ex t on DIN EN 60079 Note: 1 Encoder "S3" a Standard referen Standard DIN 6885-1	ype for cluste ff and "M3" are o and " M3 " are o ce Title 1968-08	r II, ca only av E D K	vailat ditio	ries : ble w n Γype iys, l	3G a vith c Fas Dee	anc othe	d 3E er d ning) Jes gs v	 sigr wit	י " ו hoי	. = NNI	NN NN	SN I"	N						-				
Standard and Ex t on DIN EN 60079 Note: 1 Encoder "S3" a Standard referen Standard	ype for cluste ff and "M3" are o and " M3 " are o ce Title 1968-08	r II, ca only av E D K	vailat ditio	ries : ble w n Γype iys, l	3G a vith c Fas Dee	anc othe	d 3E er d ning) Jes gs v	 sigr wit	י " ו hoי	. = NNI	NN NN	SN I"	N						-				
Standard and Ex t on DIN EN 60079 Note: 1 Encoder "S3" a Standard referen Standard DIN 6885-1	ype for cluste ff and "M3" are o and " M3 " are o ce Title 1968-08	r II, ca only av E D K	vailat ditio	ries : ble w n Γype iys, l	3G a vith c Fas Dee	anc othe	d 3E er d ning) Jes gs v	 sigr wit	י " ו hoי	. = NNI	NN NN	SN I"	N						-				

6.4 MSK043 Type Code

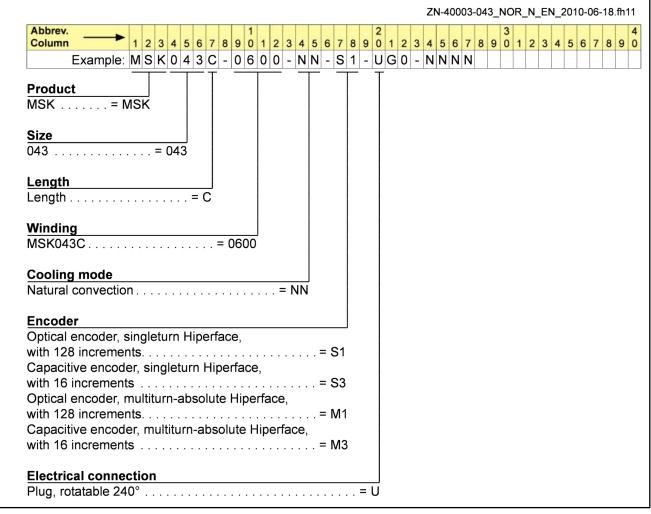


Fig.6-9: MSK043 type code (page 1)

Abbrev.		1			2					3				
Column	1 2 3 4 5 6	7 8 9 0 1	2 3 4 5	5678	9 0	1 2 3	4 5	6 7	8 9	0 1	2 3	3 4	5 6	7
Exampl	e: M S K 0 4 3	C - 0 6 C	0 - N N	N - S 1	- U	G 0 -	NN	I N N						
Shaft						ΤT			•					
	shoft sociling rin	r (Standay	-d)		- 0	,								
	shaft sealing ring													
Shaft with keyw	ay per DIN 6885	-1 with sh	aft sealin	ig ring.	= P									
Holding brake														
Holding brake Without holding	brake				=	= 0								
Without holding	brake													
Without holding	brake													
Without holding Holding brake,														
Without holding Holding brake, Other design	electrically-relea	sed, 4 Nm			=	= 1	NNN							
Without holding Holding brake, Other design		sed, 4 Nm			=	= 1	NNN	J						
Without holding Holding brake, Other design	electrically-relea	sed, 4 Nm			=	= 1	NNI]						
Without holding Holding brake, Other design	electrically-relea	sed, 4 Nm			=	= 1	NNN	1						
Without holding Holding brake, Other design Standard	electrically-relea	sed, 4 Nm			=	= 1	NNN	1						
Without holding Holding brake, Other design Standard Standard refer	electrically-releas	Title			=	= 1 . = N			n [.] P	arall				

Fig.6-10: MSK043 type code (page 2)

6.5 MSK050 Type Code

																		Z	ZN-	40	00	3-0)50	_N	IOF	ר_ו	N_I	EN	I_2	01	0-0)8-'	11 .†	ħ1
Abbrev.							1								2										3									
Column Example		34	4 5 D 5	6	7 8	3 9	0	1	23	3 4	5	6		9	0		2	3	4	5 6	5		8	9	0	1	2	3	4	5	6	7	8	9
Example	3. IV S	<u> </u>	10		- ∣- ד	- 0	0		- 10	- IN		-	5 I 	-		G	0	-	N	N	N	N												
Product																																		
MSK =	MSK																																	
Sizo																																		
Size 050		= 0	50																															
Length Lengths					ĺ																													
Lengths			= E	3, C	,																													
Winding																																		
MSK050B	=	030	00.	04	50.	06	300)																										
MSK050C																																		
			,	• ·	,																													
Housing desig	n																																	
Natural convecti									=	NN	1																							
					• •	• •	• •				•																							
Encoder 1																																		
	, single	turi	n H	ipe	rfa	ce,																												
Encoder ① Optical encoder, with 128 increm											:	= S	1																					
Optical encoder,	ents.					•••						= S	1																					
Optical encoder, with 128 increm Optical encoder,	ents , single	 turi	 n Ei	nDa	 at2	 .1,	•••																											
Optical encoder, with 128 increm Optical encoder, with 2048 increr	ents. , single nents.	turi	 n Ei	nDa	 at2	 .1, 	•••																											
Optical encoder, with 128 increm Optical encoder, with 2048 increr Capacitive enco	ents. , single nents. der, sir	turi 	n Ei 	 nDa n ⊢	at2	. 1, . 1, erfa		 ,				= S	2																					
Optical encoder, with 128 increm Optical encoder, with 2048 increr Capacitive enco with 16 increme	ents. , single nents. der, sir nts	turi 	n Ei etur	nDa nDa	at2 lipe	. 1, . 1, erfa	ace	 ;,		 		= S	2																					
Optical encoder, with 128 increm Optical encoder, with 2048 increr Capacitive enco with 16 increme Optical encoder,	ents , single ments. der, sir nts , multit	turi ngle	n Ei eturi	nDa n ⊢ sol⊧	at2 lipe 	.1, erfa	ace	, , rfa	 		: :	= S = S	2																					
Optical encoder, with 128 increm Optical encoder, with 2048 increr Capacitive enco with 16 increme Optical encoder, with 128 increm	ents , single ments. der, sir nts , multit ents	turi ngle urn	n Ei eturi -ab:	nDa n ⊢ sol	at2 lipe 	. 1, erfa Hi	ace	rfa	 	 	: :	= S = S	2																					
Optical encoder, with 128 increm Optical encoder, with 2048 increr Capacitive enco with 16 increme Optical encoder, with 128 increm Optical encoder,	ents , single ments. der, sir nts , multit ents , multit	 eturr ngle urn- 	n Ei eturi -abs -abs	nDa n ⊢ sol	at2 lipe ute 	.1, erfa Hi	ace pe	rfa	 ce, 	 	[:] [:]	= S = N	2 3 11																					
Optical encoder, with 128 increm Optical encoder, with 2048 increr Capacitive enco with 16 increme Optical encoder, with 128 increm Optical encoder, with 2048 increr	ents , single ments. der, sir nts , multiti ents , multiti ments.	 eturi ngle urn- 	n Ei eturi -ab: -ab:	nDa n H sol	at2 lipe ute 	.1, erfa Hi Er	ace ipe	rfa at2	 ce, .1,	· · · · ·	· · · = · · · =	= S = N	2 3 11																					
Optical encoder, with 128 increm Optical encoder, with 2048 increr Capacitive enco with 16 increme Optical encoder, with 128 increm Optical encoder,	ents , single nents. der, sir nts , multit ents , multit nents. der, m	eturi ngle urn- urn- urn-	n Ei eturi -abs -abs	nDa n H sol	lipe ute ute	.1, erfa Hi Er	ace ipe nDa	rfa 	 ce, .1, 	 	: : :	= S = S = N = N	2 3 11 12																					
Optical encoder, with 128 increm Optical encoder, with 2048 increm Capacitive enco with 16 increme Optical encoder, with 128 increm Optical encoder, with 2048 increm Capacitive enco with 16 increme	ents. , single nents. , der, sir nts . , multit ents. , multit nents. der, m nts .	eturr ngle urn urn	n Ei eturi -ab: -ab:	nDa n ⊢ sol	lipe ute	.1, erfa Er	nDa	rfac	 ce, .1, 	 ace	· · · · · · · · · · · · · · · · · · ·	= S = S = N = N	2 3 11 12																					
Optical encoder, with 128 increm Optical encoder, with 2048 increr Capacitive enco with 16 increme Optical encoder, with 128 increm Optical encoder, with 2048 increr Capacitive enco	ents. , single nents. der, sir nts , multit ents , multit nents. der, m nts ection	urn- ultit	n Ei eturi -ab: -ab:	nDa sol	lipe ute	.1, erfa Er	ace pe nDa	rfac	 ce, .1, 	 ace	· · · · · · · · · · · · · · · · · · ·	= S = S = N = N	2 3 11 12 13																					

Fig.6-11: MSK050 type code (page 1)

		ZN-40003-050_NOR_N_EN_2010-08-11.
		1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Example: M	S K 0 5 0 C	- 0 6 0 0 - N N - S 1 - U <u>G 0 - N N N N - S 1 - U G 0 - N N N N - S - S - S - S - S - S - S -</u>
Shaft		
		(standard)=G
Shaft with keyway p	er DIN 6885-	1 with shaft sealing ring = P
Holding brake		
	ke	= 0
		6 Nm = 1
-		
Other design		
		II, categories 3G and 3D
00 DIN EN 60070 ff		
		= NSNN
Reduced shaft run-o	out, axial run-o	out according to DIN 42955 = RNNN
Reduced shaft run-o Reduced shaft run-o	out, axial run-o out, axial run-o	out according to DIN 42955 = RNNN out according to DIN 42955 and
Reduced shaft run-o Reduced shaft run-o	out, axial run-o out, axial run-o	out according to DIN 42955 = RNNN
Reduced shaft run-o Reduced shaft run-o Ex type for cluster II	out, axial run-o out, axial run-o	out according to DIN 42955 = RNNN out according to DIN 42955 and
Reduced shaft run-o Reduced shaft run-o Ex type for cluster II Note:	out, axial run-o out, axial run-o l, categories 3	out according to DIN 42955 = RNNN out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN
Reduced shaft run-o Reduced shaft run-o Ex type for cluster II Note: 1 Encoder "S1" an	out, axial run-o out, axial run-o l, categories 3 d "M1" are on	out according to DIN 42955 = RNNN out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN nly available with other design "NNNN" and "NSNN"
Reduced shaft run-o Reduced shaft run-o Ex type for cluster II Note: 1 Encoder "S1" an Encoder "S2" an	out, axial run-o out, axial run-o l, categories 3 d "M1" are on d "M2" are on	out according to DIN 42955 = RNNN out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN nly available with other design "NNNN" and "NSNN" nly available with other design "RNNN" and "RSNN"
Reduced shaft run-o Reduced shaft run-o Ex type for cluster II Note: 1 Encoder "S1" an Encoder "S2" an	out, axial run-o out, axial run-o l, categories 3 d "M1" are on d "M2" are on	out according to DIN 42955 = RNNN out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN nly available with other design "NNNN" and "NSNN"
Reduced shaft run-o Reduced shaft run-o Ex type for cluster II Note: 1 Encoder "S1" an Encoder "S2" an	out, axial run-o out, axial run-o l, categories 3 d "M1" are on d "M2" are on	out according to DIN 42955 = RNNN out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN nly available with other design "NNNN" and "NSNN" nly available with other design "RNNN" and "RSNN"
Reduced shaft run-o Reduced shaft run-o Ex type for cluster II Note: 1 Encoder "S1" an Encoder "S2" an	out, axial run-o out, axial run-o l, categories 3 d "M1" are on d "M2" are on d "M3" are on	out according to DIN 42955 = RNNN out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN nly available with other design "NNNN" and "NSNN" nly available with other design "RNNN" and "RSNN"
Reduced shaft run-o Reduced shaft run-o Ex type for cluster II Note: 1 Encoder "S1" an Encoder "S2" an Encoder "S3" an	out, axial run-o out, axial run-o l, categories 3 d "M1" are on d "M2" are on d "M3" are on	out according to DIN 42955 = RNNN out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN nly available with other design "NNNN" and "NSNN" nly available with other design "RNNN" and "RSNN"
Reduced shaft run-o Reduced shaft run-o Ex type for cluster II Note: 1 Encoder "S1" an Encoder "S2" an Encoder "S3" an	out, axial run-o out, axial run-o l, categories 3 d "M1" are on d "M2" are on d "M3" are on e	out according to DIN 42955 = RNNN out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN hly available with other design "NNNN" and "NSNN" hly available with other design "RNNN" and "RSNN" hly available with other design "NNNN" Title
Reduced shaft run-o Reduced shaft run-o Ex type for cluster II Note: 1 Encoder "S1" an Encoder "S2" an Encoder "S3" an Standard reference Standard	out, axial run-o out, axial run-o l, categories 3 d "M1" are on d "M2" are on d "M3" are on e Edition	out according to DIN 42955 = RNNN out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN hly available with other design "NNNN" and "NSNN" hly available with other design "RNNN" and "RSNN" hly available with other design "NNNN"
Reduced shaft run-o Reduced shaft run-o Ex type for cluster II Note: 1 Encoder "S1" an Encoder "S2" an Encoder "S3" an Standard reference Standard	out, axial run-o out, axial run-o l, categories 3 d "M1" are on d "M2" are on d "M3" are on e Edition	out according to DIN 42955 = RNNN out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN hly available with other design "NNNN" and "NSNN" hly available with other design "RNNN" and "RSNN" hly available with other design "NNNN" Title Drive Type Fastenings without Taper Action; Parallel Keys,
Reduced shaft run-o Reduced shaft run-o Ex type for cluster II Note: 1 Encoder "S1" an Encoder "S2" an Encoder "S3" an Standard reference Standard DIN 6885-1	out, axial run-o out, axial run-o out, axial run-o d "M1" are on d "M2" are on d "M3" are on d "M3" are on e Edition 1968-08	out according to DIN 42955 = RNNN out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN hly available with other design "NNNN" and "NSNN" hly available with other design "RNNN" and "RSNN" hly available with other design "NNNN" Title Drive Type Fastenings without Taper Action; Parallel Keys, Keyways, Deep Patter
Reduced shaft run-o Reduced shaft run-o Ex type for cluster II Note: 1 Encoder "S1" an Encoder "S2" an Encoder "S3" an Standard reference Standard DIN 6885-1	out, axial run-o out, axial run-o l, categories 3 d "M1" are on d "M2" are on d "M3" are on d "M3" are on e Edition 1968-08	out according to DIN 42955 = RNNN out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN hly available with other design "NNNN" and "NSNN" hly available with other design "RNNN" and "RSNN" hly available with other design "NNNN" Title Drive Type Fastenings without Taper Action; Parallel Keys, Keyways, Deep Patter Tolerances of shaft extension run-out of mounting flanges

Fig.6-12: MSK050 type code (page 2)

6.6 MSK060 Type Code

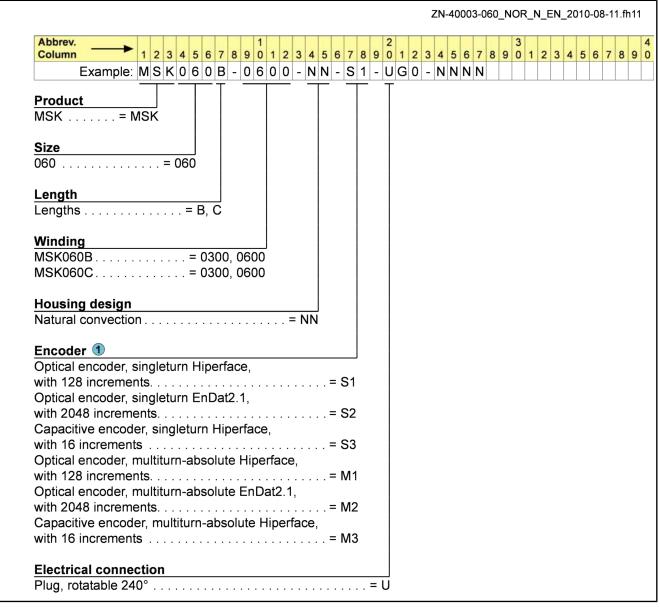


Fig.6-13: MSK060 type code (page 1)

						ZN-4	0003-	060_	NOR_	_N_E	N_201	0-08-	11.1
	1 2 3 4 5 6 7 M S K 0 6 0 B						6 7	-	3	1 2 3	3 4 5	5 6 7	7 8
Shaft					ΤΤ			-					
Plain shaft with sha	aft sealing ring	(standard)		= G	5								
Shaft with keyway	per DIN 6885-	1 with shaft sea	aling ring.	= P									
Holding brake													
Without holding bra	ake			=	= 0								
Holding brake, elec	ctrical release,	10 Nm		=	= 1								
Other design													
Other design Standard					- N		J						
					. – IN	ININIY	I						
Standard and Evity	no tor clustor l	L catagorias 3	C and 3D										
Standard and Ex ty on DIN EN 60079 f					= N	SNN							
on DIN EN 60079 f	f												
on DIN EN 60079 f Reduced shaft run-	f	out according t	o DIN 429	 955	. = R								
	f -out, axial run-(-out, axial run-(out according t	o DIN 429 o DIN 429	 955 955 and	. = R d	NNN	I						
on DIN EN 60079 f Reduced shaft run- Reduced shaft run- Ex type for cluster	f -out, axial run-(-out, axial run-(out according t	o DIN 429 o DIN 429	 955 955 and	. = R d	NNN	I						
on DIN EN 60079 f Reduced shaft run- Reduced shaft run- Ex type for cluster l Note:	f -out, axial run-c -out, axial run-c II, categories 3	out according t out according t G and 3D on I	o DIN 429 o DIN 429 DIN EN 60	955 955 and 9079 ff	. = R d = R	NNN SNN			N!"				
on DIN EN 60079 f Reduced shaft run- Reduced shaft run- Ex type for cluster I Note: 1 Encoder "S1" ar	f	but according to but according to G and 3D on I ly available wit	th other de	 955 955 and 9079 ff esign "l	. = R d = R	NNN SNN N'' ai	l nd "ľ						
on DIN EN 60079 f Reduced shaft run- Reduced shaft run- Ex type for cluster l Note: 1 Encoder "S1" ar Encoder "S2" ar	f out, axial run-o out, axial run-o II, categories 3 nd "M1" are on nd "M2" are on	but according to but according to G and 3D on I ly available with ly available with	to DIN 429 to DIN 429 DIN EN 60 th other de	955 955 and 9079 ff esign "	. = R d = R 'NNN 'RNN	NNN SNN N" ai N" ai	l nd "ľ						
on DIN EN 60079 f Reduced shaft run- Reduced shaft run- Ex type for cluster I Note: 1 Encoder "S1" ar	f out, axial run-o out, axial run-o II, categories 3 nd "M1" are on nd "M2" are on	but according to but according to G and 3D on I ly available with ly available with	to DIN 429 to DIN 429 DIN EN 60 th other de	955 955 and 9079 ff esign "	. = R d = R 'NNN 'RNN	NNN SNN N" ai N" ai	l nd "ľ						
on DIN EN 60079 f Reduced shaft run- Reduced shaft run- Ex type for cluster l Note: 1 Encoder "S1" ar Encoder "S2" ar	f out, axial run-o out, axial run-o II, categories 3 nd "M1" are on nd "M2" are on nd "M3" are on	but according to but according to G and 3D on I ly available with ly available with	to DIN 429 to DIN 429 DIN EN 60 th other de	955 955 and 9079 ff esign "	. = R d = R 'NNN 'RNN	NNN SNN N" ai N" ai	l nd "ľ						
on DIN EN 60079 f Reduced shaft run- Reduced shaft run- Ex type for cluster I Note: 1 Encoder "S1" ar Encoder "S2" ar Encoder "S3" ar	f out, axial run-o out, axial run-o II, categories 3 nd "M1" are on nd "M2" are on nd "M3" are on	but according to but according to G and 3D on I ly available with ly available with	to DIN 429 to DIN 429 DIN EN 60 th other de	955 955 and 9079 ff esign "	. = R d = R 'NNN 'RNN	NNN SNN N" ai N" ai	l nd "ľ						
on DIN EN 60079 f Reduced shaft run- Reduced shaft run- Ex type for cluster I Note: 1 Encoder "S1" ar Encoder "S2" ar Encoder "S3" ar Standard reference Standard	f out, axial run-o out, axial run-o II, categories 3 nd "M1" are on nd "M2" are on nd "M3" are on	but according to but according to G and 3D on I ly available with ly available with ly available with	to DIN 429 to DIN 429 DIN EN 60 th other de th other de	955 955 and 9079 ff esign "l esign "l	. = R d = R NNN RNN	NNN SNN N" ai N" ai N"	nd "f	RSN	N"	el Ke	eys,		
on DIN EN 60079 f Reduced shaft run- Reduced shaft run- Ex type for cluster I Note: 1 Encoder "S1" ar Encoder "S2" ar Encoder "S3" ar Standard reference Standard	f out, axial run-o out, axial run-o II, categories 3 nd "M1" are on nd "M2" are on nd "M3" are on ee Edition	but according to but according to G and 3D on I ly available wit ly available wit ly available wit Title Drive Type I Keyways, D	th other de th other de th other de th other de	955 955 and 9079 ff esign "l esign "l esign "l s witho r	. = R d "NNN RNN NNN	NNN SNN N" ai N" ai N"	I Ind "I Actic	RSN on; P	N" arall		•		
on DIN EN 60079 f Reduced shaft run- Reduced shaft run- Ex type for cluster I Note: 1 Encoder "S1" ar Encoder "S2" ar Encoder "S3" ar Standard reference	f out, axial run-o out, axial run-o II, categories 3 nd "M1" are on nd "M2" are on nd "M3" are on ee Edition	but according to but according to G and 3D on D ly available with ly available with Title Drive Type I Keyways, D Tolerances	th other de th other de th other de th other de th other de fastenings beep Patte of shaft ex	955 955 and 9079 ff esign "l esign "l esign "l s witho r ctensio	. = R d "RNN RNN NNN Dut Ta	NNN SNN N" a N" a N"	I Ind "I Actic	RSN on; P	N" arall		•		
on DIN EN 60079 f Reduced shaft run- Reduced shaft run- Ex type for cluster I Note: 1 Encoder "S1" ar Encoder "S2" ar Encoder "S3" ar Standard referenc Standard DIN 6885-1	f out, axial run-o out, axial run-o ll, categories 3 nd "M1" are on nd "M2" are on nd "M3" are on se Edition 1968-08	but according to but according to G and 3D on I ly available wit ly available wit ly available wit Title Drive Type I Keyways, D	E DIN 429 DIN 429 DIN EN 60 th other de th other de th other de th other de peep Patte of shaft ex electrical r	55 55 and 55 and 079 ff esign " esign " esign " s witho r ctensio machin	. = R d = R NNN RNN NNN	NNN SNN N" a N" a N" -out	I nd "I nd "F Actic	RSN on; P ioun	N" arall ting ⁻	flang	es		

Fig.6-14: MSK060 type code (page 2)

6.7 MSK061 Type Code

																	Z	N-4	000	3-0	61_	_NC	DR_	_N_	EN	I_2	01	0-08	3-11	.fh′
Abbrev.						1				_		-		2				-				3						_		
Column Example		34	5		8	9 0		2 3	5 4	5	0 1		9	0		3	4 NI 1			8	9	0	1	2 .	5 4	5	0		8	9
Example		K U				0 3		- 0	- N		- 3	5 I T	-		G	- /		IN I	NIN											
Product																														
MSK =	MSK																													
Size 061																														
061		= 06	51																											
l enath 1																														
Length ① Lengths		;	= B																											
				, -																										
Winding code MSK061B																														
MSK061C	=	: 020	00, 0	030	0, 0)60	0																							
Cooling mode																														
Natural convection	 							=	NN	J																				
	/ // · · · ·		• • •	• •			•••	•																						
Encoder 2																														
Optical encoder,																														
with 128 increme									• • •	=	= S	1																		
Optical encoder,											0	~																		
with 2048 increm Capacitive encod									•••	=	= 5.	2																		
with 16 incremen	ier, sii nts	ngiei	um		per	ac	₽,			=	- 5	3																		
Optical encoder,										•	0	0																		
with 128 increme										=	= M	11																		
Optical encoder,																														
with 2048 increm											= M	12																		
Capacitive encod																														
with 16 incremen	its				•••					. =	= M	13																		
		_																												
Electrical conne	ection	1																												

Fig.6-15: MSK061 type code (page 1)

		ZN-40003-061_NOR	
Abbrev. Column		7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1	1 2 3 4 5 6 7 8
Shaft			
		g (standard) = G	
Shaft with keywa	ıy per DIN 6885	-1 with shaft sealing ring = P	
Holding brake			
	brake	=0	
•		sed, 10 Nm = 1	
Other design 3			
		= NNNN	
Standard and Ex	type for cluster	II, categories 3G and 3D	
	• •		
on DIN EN 6007	9 ff	= NSNN	
on DIN EN 6007 Reduced shaft ru	9 ff	-out according to DIN 42955 = RNNN	
on DIN EN 6007 Reduced shaft ru Reduced shaft ru	9 ff	-out according to DIN 42955 = NSNN -out according to DIN 42955 and	
on DIN EN 6007 Reduced shaft ru Reduced shaft ru	9 ff	-out according to DIN 42955 = RNNN	
on DIN EN 6007 Reduced shaft ru Reduced shaft ru Ex type for cluste	9 ff	-out according to DIN 42955 = NSNN -out according to DIN 42955 and	
on DIN EN 6007 Reduced shaft ru Reduced shaft ru Ex type for cluste Note:	9 ff un-out, axial run un-out, axial run er II, categories	-out according to DIN 42955 = RNNN -out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN	
on DIN EN 6007 Reduced shaft ru Reduced shaft ru Ex type for cluste Note: 1 Length "B" is	9 ffun-out, axial run un-out, axial run er II, categories only available v	-out according to DIN 42955 = NSNN -out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN rith encoder "S1", "S3", "M1" and "M3" and other desig	gn "NNNN"
on DIN EN 6007 Reduced shaft ru Reduced shaft ru Ex type for cluste Note: 1 Length "B" is 2 Encoder "S1"	9 ff un-out, axial run un-out, axial run er II, categories only available v and "M1" are o	-out according to DIN 42955 = NSNN -out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN with encoder "S1", "S3", "M1" and "M3" and other design nly available with other design "NNNN" and "NSNN"	gn "NNNN"
on DIN EN 6007 Reduced shaft ru Reduced shaft ru Ex type for cluste Note: 1 Length "B" is 2 Encoder "S1" Encoder "S2"	9 ff un-out, axial run un-out, axial run er II, categories only available w and "M1" are o and "M2" are o	-out according to DIN 42955 = NSNN -out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN with encoder "S1", "S3", "M1" and "M3" and other design nly available with other design "NNNN" and "NSNN" nly available with other design "RNNN" and "RSNN"	gn "NNNN"
on DIN EN 6007 Reduced shaft ru Reduced shaft ru Ex type for cluste Note: 1 Length "B" is 2 Encoder "S1" Encoder "S2"	9 ff un-out, axial run un-out, axial run er II, categories only available w and "M1" are o and "M2" are o	-out according to DIN 42955 = NSNN -out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN with encoder "S1", "S3", "M1" and "M3" and other design nly available with other design "NNNN" and "NSNN"	gn "NNNN"
on DIN EN 6007 Reduced shaft ru Reduced shaft ru Ex type for cluste Note: 1 Length "B" is 2 Encoder "S1" Encoder "S2"	9 ff un-out, axial run un-out, axial run er II, categories only available w and "M1" are o and "M2" are o	-out according to DIN 42955 = NSNN -out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN with encoder "S1", "S3", "M1" and "M3" and other design nly available with other design "NNNN" and "NSNN" nly available with other design "RNNN" and "RSNN"	gn "NNNN"
on DIN EN 6007 Reduced shaft ru Reduced shaft ru Ex type for cluste Note: 1 Length "B" is 2 Encoder "S1" Encoder "S2" Encoder "S3"	9 ff un-out, axial run er II, categories only available v and "M1" are o and "M2" are o and "M3" are o	-out according to DIN 42955 = NSNN -out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN with encoder "S1", "S3", "M1" and "M3" and other design nly available with other design "NNNN" and "NSNN" nly available with other design "RNNN" and "RSNN"	gn "NNNN"
on DIN EN 6007 Reduced shaft ru Reduced shaft ru Ex type for cluste Note: 1 Length "B" is 2 Encoder "S1" Encoder "S2" Encoder "S3" Standard refere	9 ff un-out, axial run un-out, axial run er II, categories only available v and "M1" are o and "M2" are o and "M3" are o	= NSNN -out according to DIN 42955 = RNNN -out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN with encoder "S1", "S3", "M1" and "M3" and other design nly available with other design "NNNN" and "NSNN" nly available with other design "RNNN" and "RSNN" nly available with other design "NNNN" and "RSNN"	gn "NNNN"
on DIN EN 6007 Reduced shaft ru Reduced shaft ru Ex type for cluste Note: 1 Length "B" is 2 Encoder "S1" Encoder "S2" Encoder "S3" Standard refere Standard	9 ff un-out, axial run un-out, axial run er II, categories only available v and "M1" are o and "M2" are o and "M3" are o nce Title	= NSNN -out according to DIN 42955 = RNNN -out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN with encoder "S1", "S3", "M1" and "M3" and other design nly available with other design "NNNN" and "NSNN" nly available with other design "RNNN" and "RSNN" nly available with other design "NNNN" How available with other design "NNNN" How available with other design "NNNN" How available with other design "NNNN"	-
on DIN EN 6007 Reduced shaft ru Reduced shaft ru Ex type for cluste Note: 1 Length "B" is 2 Encoder "S1" Encoder "S2" Encoder "S3" Standard refere	9 ff un-out, axial run un-out, axial run er II, categories only available v and "M1" are o and "M2" are o and "M3" are o	-out according to DIN 42955 = RNNN -out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN with encoder "S1", "S3", "M1" and "M3" and other design nly available with other design "NNNN" and "NSNN" nly available with other design "RNNN" and "RSNN" nly available with other design "NNNN" and "RSNN" nly available with other design "NNNN" Edition Drive Type Fastenings without Taper Action; Paral	-
on DIN EN 6007 Reduced shaft ru Reduced shaft ru Ex type for cluste Note: 1 Length "B" is 2 Encoder "S1" Encoder "S2" Encoder "S3" Standard refere Standard DIN 6885-1	9 ff un-out, axial run un-out, axial run er II, categories only available w and "M1" are o and "M2" are o and "M3" are o nce Title 1968-08	 = NSNN -out according to DIN 42955 = RNNN -out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN rith encoder "S1", "S3", "M1" and "M3" and other design nly available with other design "NNNN" and "NSNN" nly available with other design "RNNN" and "RSNN" nly available with other design "RNNN" and "RSNN" nly available with other design "NNNN" and "RSNN" Edition Drive Type Fastenings without Taper Action; Paral Keyways, Deep Patter 	llel Keys,
on DIN EN 6007 Reduced shaft ru Reduced shaft ru Ex type for cluste Note: 1 Length "B" is 2 Encoder "S1" Encoder "S2" Encoder "S3" Standard refere Standard	9 ff un-out, axial run un-out, axial run er II, categories only available v and "M1" are o and "M2" are o and "M3" are o nce Title	 = NSNN -out according to DIN 42955 = RNNN -out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN with encoder "S1", "S3", "M1" and "M3" and other design nly available with other design "NNNN" and "NSNN" nly available with other design "RNNN" and "RSNN" nly available with other design "NNNN" and "RSNN" nly available with other design "NNNN" and "RSNN" Drive Type Fastenings without Taper Action; Paral Keyways, Deep Patter Tolerances of shaft extension run-out of mounting 	llel Keys,
on DIN EN 6007 Reduced shaft ru Reduced shaft ru Ex type for cluste Note: 1 Length "B" is 2 Encoder "S1" Encoder "S2" Encoder "S3" Standard refere Standard DIN 6885-1	9 ff un-out, axial run un-out, axial run er II, categories only available v and "M1" are o and "M2" are o and "M3" are o nce Title 1968-08 1981-12	= NSNN -out according to DIN 42955 = RNNN -out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN with encoder "S1", "S3", "M1" and "M3" and other design nly available with other design "NNNN" and "NSNN" nly available with other design "RNNN" and "RSNN" nly available with other design "NNNN" and "RSNN" nly available with other design "NNNN" Edition Drive Type Fastenings without Taper Action; Paral Keyways, Deep Patter	llel Keys, flanges

Fig.6-16: MSK061 type code (page 2)

6.8 MSK070 Type Code

		ZI	N-4000	3-070)_NO	R_N	_EN	I_20 ⁻	10-08	8-11.	fh1
Abbrev. 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6	7 8 9 0	1 0 0 1	5 0	7 0	3					7 6	
Column 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 Example: M S K 0 7 0 C - 0 4 5 0 - N N -					90	12	2 3	4 5	0 6	/ 8	9
		G 0 - N									
Product											
MSK = MSK											
Sizo											
Size 070 = 070											
Length											
Length Lengths = C, D, E											
Winding											
MSK070C = 0150, 0300, 0450											
MSK070D = 0150, 0300, 0450											
MSK070E = 0150, 0300, 0450											
Housing design											
Housing design Natural convection											
Natural convection											
Natural convection = NN Encoder ①											
Natural convection											
Natural convection	51										
Natural convection											
Natural convection											
Natural convection	52										
Natural convection	52										
Natural convection = NN Encoder 1	52 53										
Natural convection = NN Encoder 1	52 53 M1										
Natural convection = NN Encoder 1	52 53 M1										
Natural convection = NN Encoder 1 Optical encoder, singleturn Hiperface, with 128 increments = S Optical encoder, singleturn EnDat2.1, = S Optical encoder, singleturn EnDat2.1, = S Capacitive encoder, singleturn Hiperface, = S Optical encoder, multiturn-absolute Hiperface, = S Optical encoder, multiturn-absolute Hiperface, = N Optical encoder, multiturn-absolute Hiperface, = N Optical encoder, multiturn-absolute EnDat2.1, = N Optical encoder, multiturn-absolute EnDat2.1, = N Optical encoder, multiturn-absolute EnDat2.1, = N	52 53 M1 M2										
Natural convection = NN Encoder 1	52 53 M1 M2										
Natural convection = NN Encoder 1 Optical encoder, singleturn Hiperface, with 128 increments = S Optical encoder, singleturn EnDat2.1, = S Optical encoder, singleturn EnDat2.1, = S Capacitive encoder, singleturn Hiperface, = S Optical encoder, multiturn-absolute Hiperface, = S Optical encoder, multiturn-absolute Hiperface, = N Optical encoder, multiturn-absolute Hiperface, = N Optical encoder, multiturn-absolute EnDat2.1, = N Optical encoder, multiturn-absolute EnDat2.1, = N Optical encoder, multiturn-absolute EnDat2.1, = N	52 53 M1 M2										

Fig.6-17: MSK070 type code (page 1)

							ZN-4	0003	010_	· · • · · <u>-</u>		N_201	0-08-	11.1
	1 2 3 4 5 6 7 M S K 0 7 0 C									3	1 2 3	3 4 5	6 7	8
· · ·					T	ΓΤ		1	-					
Shaft	- 6 4 Line	(
Plain shaft with sha Shaft with keyway														
Shalt with Keyway	per Diri 0000-		t sealing	nng	. – 1									
Holding brake														
Without holding brake														
Holding brake, elec	ctrical release,	23 Nm			=	1								
Other design														
Standard.						= N	NNN	_ 						
						. – 13								
Standard and Ex ty	pe for cluster l	II, categorie	es 3G an	d 3D										
	/pe for cluster l ff	II, categorie	es 3G and	d 3D		. = N	SNN	I						
Standard and Ex ty on DIN EN 60079 Reduced shaft run Reduced shaft run	/pe for cluster l ff -out, axial run-(-out, axial run-(II, categorie out accordi out accordi	es 3G and ing to DIN ing to DIN	d 3D N 4295 N 4295	5 5 and	. = N . = R d	SNN NNN	1						
Standard and Ex ty on DIN EN 60079 t Reduced shaft run	/pe for cluster l ff -out, axial run-(-out, axial run-(II, categorie out accordi out accordi	es 3G and ing to DIN ing to DIN	d 3D N 4295 N 4295	5 5 and	. = N . = R d	SNN NNN	1						
Standard and Ex ty on DIN EN 60079 Reduced shaft run Reduced shaft run Ex type for cluster	/pe for cluster l ff -out, axial run-(-out, axial run-(II, categorie out accordi out accordi	es 3G and ing to DIN ing to DIN	d 3D N 4295 N 4295	5 5 and	. = N . = R d	SNN NNN	1						
Standard and Ex ty on DIN EN 60079 Reduced shaft run Reduced shaft run Ex type for cluster Note:	/pe for cluster I ff -out, axial run-(-out, axial run-(II, categories 3	II, categorie out accordi out accordi 3G and 3D	es 3G and ing to DIN ing to DIN on DIN E	d 3D N 4295 N 4295 N 4295 EN 600	5 5 and 79 ff	. = N . = R d = R	SNN NNN SNN	 	NSN	N"				
Standard and Ex ty on DIN EN 60079 f Reduced shaft run Reduced shaft run Ex type for cluster Note: 1 Encoder "S1" a	/pe for cluster I ff -out, axial run-(-out, axial run-(II, categories 3 nd "M1" are on	II, categorie out accordi out accordi 3G and 3D	es 3G and ing to DIN ing to DIN on DIN E e with oth	d 3D N 4295 N 4295 EN 600	5 5 and 79 ff	. = N . = R d = R	SNN NNN SNN	 nd "						
Standard and Ex ty on DIN EN 60079 Reduced shaft run Reduced shaft run Ex type for cluster Note:	ype for cluster I ff -out, axial run-(-out, axial run-(II, categories 3 nd "M1" are on nd "M2" are on	II, categorie out accordi out accordi 3G and 3D Ily available Ily available	es 3G and ing to DIN ing to DIN on DIN E e with oth e with oth	d 3D N 4295 N 4295 N 600 ner des	5 5 and 79 ff sign "I	. = N . = R d = R NNNI	SNN NNN SNN N" a N" a	 nd "						
Standard and Ex ty on DIN EN 60079 f Reduced shaft run Reduced shaft run Ex type for cluster Note: 1 Encoder "S1" a Encoder "S2" a	ype for cluster I ff -out, axial run-(-out, axial run-(II, categories 3 nd "M1" are on nd "M2" are on	II, categorie out accordi out accordi 3G and 3D Ily available Ily available	es 3G and ing to DIN ing to DIN on DIN E e with oth e with oth	d 3D N 4295 N 4295 N 600 ner des	5 5 and 79 ff sign "I	. = N . = R d = R NNNI	SNN NNN SNN N" a N" a	 nd "						
Standard and Ex ty on DIN EN 60079 f Reduced shaft run Reduced shaft run Ex type for cluster Note: 1 Encoder "S1" a Encoder "S2" a Encoder "S3" a	/pe for cluster I ff -out, axial run-(-out, axial run-(II, categories 3 nd "M1" are on nd "M2" are on nd "M3" are on	II, categorie out accordi out accordi 3G and 3D Ily available Ily available	es 3G and ing to DIN ing to DIN on DIN E e with oth e with oth	d 3D N 4295 N 4295 N 600 ner des	5 5 and 79 ff sign "I	. = N . = R d = R NNNI	SNN NNN SNN N" a N" a	 nd "						
Standard and Ex ty on DIN EN 60079 f Reduced shaft run Reduced shaft run Ex type for cluster Note: 1 Encoder "S1" a Encoder "S2" a	/pe for cluster I ff -out, axial run-(-out, axial run-(II, categories 3 nd "M1" are on nd "M2" are on nd "M3" are on	II, categorie out accordi out accordi 3G and 3D Ily available Ily available	es 3G and ing to DIN ing to DIN on DIN E e with oth e with oth	d 3D N 4295 N 4295 N 600 ner des	5 5 and 79 ff sign "I	. = N . = R d = R NNNI	SNN NNN SNN N" a N" a	 nd "						
Standard and Ex ty on DIN EN 60079 f Reduced shaft run Reduced shaft run Ex type for cluster Note: 1 Encoder "S1" a Encoder "S2" a Encoder "S3" a	/pe for cluster I ff -out, axial run- -out, axial run- II, categories 3 nd "M1" are on nd "M2" are on nd "M3" are on	II, categorie out accordi out accordi G and 3D Ily available Ily available Ily available	es 3G and ing to DIN ing to DIN on DIN E e with oth e with oth	d 3D N 4295 N 4295 N 600 her des her des	5 5 and 79 ff sign "I sign "I	. = N . = R d = R NNNI RNNI	SNN NNN SNN N" a N" a N"	 nd "	RSN	N"	el Ke	eys,		
Standard and Ex ty on DIN EN 60079 f Reduced shaft run Reduced shaft run Ex type for cluster Note: 1 Encoder "S1" a Encoder "S2" a Encoder "S3" a Standard reference Standard	ype for cluster I ff	II, categorie out accordi out accordi 3G and 3D Ily available Ily available Ily available Drive Ty	es 3G and ing to DIN ing to DIN on DIN E e with oth e with oth e with oth	d 3D N 4295 N 4295 N 600 her des her des	5 5 and 79 ff sign "I sign "I	. = N . = R d = R NNNI RNNI	SNN NNN SNN N" a N" a N"	 nd "	RSN	N"	el Ke	eys,		
Standard and Ex ty on DIN EN 60079 f Reduced shaft run Reduced shaft run Ex type for cluster Note: 1 Encoder "S1" a Encoder "S2" a Encoder "S3" a Standard reference Standard	ype for cluster I ff	II, categorie out accordi out accordi G and 3D Ily available Ily available Ily available Drive Ty Keyway	es 3G and ing to DIN ing to DIN on DIN E e with oth e with oth e with oth	d 3D N 4295 N 4295 N 600 her des her des her des her des	5 5 and 79 ff sign "I sign "I sign "I witho	. = N . = R d = R NNNI NNNI	SNN NNN SNN N" a N" a N" a	I I nd "I Actic	RSN on; P	N" arall		•		
Standard and Ex ty on DIN EN 60079 f Reduced shaft run Reduced shaft run Ex type for cluster Note: 1 Encoder "S1" a Encoder "S2" a Encoder "S3" a Standard reference Standard DIN 6885-1	vpe for cluster I ff	II, categorie out accordi out accordi out accordi SG and 3D Ily available Ily available Ily available Title Drive Ty Keyway Tolerand for rotati	es 3G and ing to DIN ing to DIN on DIN E e with oth e with oth e with oth sype Faste s, Deep F	d 3D N 4295 N 4295 N 4295 EN 600 her des her des her des her des her des her des her des her des her des her des	5 5 and 79 ff sign "I sign "I sign "I witho ension achin	. = N . = R d = R NNNI NNNI out Ta n run	SNN NNN SNN N" a N" a N" per , -out	I I nd "I Actic of m	RSN on; P noun	N" arall	flang	es		

Fig.6-18: MSK070 type code (page 2)

6.9 MSK071 Type Code

				ZN-	400	03-	071	_N(OR_	_N_I	EN_	_200	09-0	5-15	.fh1
	2	2				-			3					7 0	
Column 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 Example: M S K 0 7 1 D - 0 3 0 0 - N N - S								9 (0 1	2	3	4 5	6	78	9
			0 -			4 I 4									
Product															
MSK = MSK															
Size 071 = 071															
0/1=0/1															
Length															
Length = C, D, E															
Winding															
MSK071C = 0200, 0300, 0450															
MSK071D = 0200, 0300, 0450															
MSK071E = 0200, 0300, 0450															
MSK071E = 0200, 0300, 0450 Cooling mode															
MSK071E = 0200, 0300, 0450 <u>Cooling mode</u> Liquid cooling = FN 1															
MSK071E = 0200, 0300, 0450 <u>Cooling mode</u> Liquid cooling															
MSK071E = 0200, 0300, 0450 Cooling mode															
MSK071E = 0200, 0300, 0450 Cooling mode Liquid cooling = FN 1 Natural convection = NN															
MSK071E = 0200, 0300, 0450 <u>Cooling mode</u> Liquid cooling = FN (1) Natural convection = NN Encoder	1														
MSK071E = 0200, 0300, 0450 Cooling mode Liquid cooling = FN 1 Natural convection = NN Encoder Optical encoder, singleturn Hiperface,	1														
MSK071E = 0200, 0300, 0450 Cooling mode = FN 1 Liquid cooling = FN 1 Natural convection = NN Encoder															
MSK071E = 0200, 0300, 0450 Cooling mode Liquid cooling	2														
MSK071E = 0200, 0300, 0450 Cooling mode = FN 1 Liquid cooling = FN 1 Natural convection = NN Encoder = NN Optical encoder, singleturn Hiperface, = S1 Optical encoder, singleturn EnDat2.1, = S2 Capacitive encoder, singleturn Hiperface, = S2 Capacitive encoder, singleturn Hiperface, = S3	2														
MSK071E = 0200, 0300, 0450 Cooling mode Liquid cooling = FN (1) Natural convection = NN Encoder Optical encoder, singleturn Hiperface, with 128 increments = S1 Optical encoder, singleturn EnDat2.1, with 2048 increments = S2 Capacitive encoder, singleturn Hiperface, with 16 increments = S3 Optical encoder, multiturn-absolute Hiperface,	2 3														
MSK071E = 0200, 0300, 0450 Cooling mode Liquid cooling	2 3														
MSK071E = 0200, 0300, 0450 Cooling mode Liquid cooling	2 3 1														
MSK071E = 0200, 0300, 0450 Cooling mode Liquid cooling	2 3 1														
MSK071E = 0200, 0300, 0450 Cooling mode Liquid cooling	2 3 1 2														

Fig.6-19: MSK071 type code (page 1)

											ZN									
Abbrev.	1 2 3 4 5		1				7 0	2	2	2	2 4		6 7		3				6 7	7 0
	MSK07														9 0	1 2		4 5	0 /	0
Electrical connect	ction								ΓT	T				•						
Plug, rotatable 24								. = U												
Shaft																				
Plain shaft with sh	aft sealing	ring (S	Stand	lard))			=	G											
Shaft with keyway																				
Holding brake																				
Without holding bi	rake								. =	0										
Holding brake, ele																				
Holding brake, ele	ectrically-re	eleased	, 30	Nm					. =	2										
Other de l																				
Other design											INTE	1								
Standard										. = 1	NNN	IN								
StandardStandard and Ex t	type for clu	uster II,	cate	gorie	es 30	G an	d 3D													
Standard Standard and Ex t on DIN EN 60079	type for clu	uster II,	cate	gorie	es 30	G an	d 3D			. = 1	NSN	N								
Standard and Ex t on DIN EN 60079 Reduced shaft rur	type for clu ff n-out, axia	uster II, I run-ou	cates	gorie cordi	es 30 ing to	G an	d 3D N 429	 955.		. = 1 . = F	NSN	N								
Standard and Ex t Standard and Ex t on DIN EN 60079 Reduced shaft rur Reduced shaft rur	type for clu ff n-out, axia n-out, axia	uster II, I run-ou I run-ou	cates it acc it acc	gorie cordi cordi	es 30 ing to ing to	G an D DIN D DIN	d 3D N 429 N 429	955. 955 a	and	. = 1 . = F 1	NSN RNN	IN IN								
Standard and Ex t on DIN EN 60079 Reduced shaft rur	type for clu ff n-out, axia n-out, axia	uster II, I run-ou I run-ou	cates it acc it acc	gorie cordi cordi	es 30 ing to ing to	G an D DIN D DIN	d 3D N 429 N 429	955. 955 a	and	. = 1 . = F 1	NSN RNN	IN IN								
Standard and Ex t on DIN EN 60079 Reduced shaft rur Reduced shaft rur	type for clu ff n-out, axia n-out, axia	uster II, I run-ou I run-ou	cates it acc it acc	gorie cordi cordi	es 30 ing to ing to	G an D DIN D DIN	d 3D N 429 N 429	955. 955 a	and	. = 1 . = F 1	NSN RNN	IN IN								
Standard	type for clu ff n-out, axia n-out, axia r II, catego	uster II, I run-ou I run-ou ries 3G	cate it acc it acc it acc i and	gorie cordi cordi 3D	es 30 ing to ing to on D	G an D DIN D DIN D DIN E	d 3D 1 429 N 429 N 429 EN 60	955. 955 a 9079	and ff	. = 1 . = F 1 = F	NSN RNN RSN	N N	othe	er de	esig	וח "ו	NNN	IN"	and	"RI
Standard Standard and Ex t on DIN EN 60079 Reduced shaft rur Reduced shaft rur Ex type for cluster Note: 1 Cooling mode 2 Encoder "S1" a	type for clu ff n-out, axia n-out, axia r II, catego "FN" is on and "M1" a	uster II, I run-ou I run-ou ries 3G Iy availa are only	cate it acc it acc and able	gorie cordi cordi 3D with lable	es 30 ing to ing to on D hold e wit	G an o DIN o DIN DIN E ling I h oth	d 3D 1 429 N 429 N 429 N 60 Orake	955. 955 a 9079 e "0" esigr	 and ff an	. = 1 . = 1 1 = 1 d "2	NSN RNN RSN 2" ar	IN IN IN an	d "N	ISN	N"	ın " i	NNN	JN"	and	"RI
Standard Standard and Ex t on DIN EN 60079 Reduced shaft rur Reduced shaft rur Ex type for cluster Note: 1 Cooling mode 2 Encoder "S1" a Encoder "S2" a	type for clu ff n-out, axia r II, catego "FN" is on and "M1" a and "M2" a	uster II, I run-ou I run-ou ries 3G Iy availa are only are only	cate it acc it acc it acc and able avai avai	gorie cordi cordi 3D with lable lable	es 30 ing to ing to on D hold e wit	G an o DIN o DIN DIN E ling I h oth	d 3D 1 429 N 429 N 429 N 60 EN 60 Dorake	955. 955 a 9079 e "0" esigr esigr	and ff an n "N	. = I . = I	NSN RNN RSN RSN 2" ar 1N"	IN IN IN an	d "N	ISN	N"	ın "I	NNN	IN"	and	"RI
Standard Standard and Ex t on DIN EN 60079 Reduced shaft rur Reduced shaft rur Ex type for cluster Note: 1 Cooling mode 2 Encoder "S1" a	type for clu ff n-out, axia r II, catego "FN" is on and "M1" a and "M2" a	uster II, I run-ou I run-ou ries 3G Iy availa are only are only	cate it acc it acc it acc and able avai avai	gorie cordi cordi 3D with lable lable	es 30 ing to ing to on D hold e wit	G an o DIN o DIN DIN E ling I h oth	d 3D 1 429 N 429 N 429 N 60 EN 60 Dorake	955. 955 a 9079 e "0" esigr esigr	and ff an n "N	. = I . = I	NSN RNN RSN RSN 2" ar 1N"	IN IN IN an	d "N	ISN	N"	וי חן "ו	NNN	IN"	and	"RI
Standard Standard and Ex t on DIN EN 60079 Reduced shaft rur Reduced shaft rur Ex type for cluster Note: 1 Cooling mode 2 Encoder "S1" a Encoder "S2" a	type for clu ff n-out, axia n-out, axia r II, catego "FN" is on and "M1" a and "M2" a	uster II, I run-ou I run-ou ries 3G Iy availa are only are only	cate it acc it acc it acc and able avai avai	gorie cordi cordi 3D with lable lable	es 30 ing to ing to on D hold e wit	G an o DIN o DIN DIN E ling I h oth	d 3D 1 429 N 429 N 429 N 60 EN 60 Dorake	955. 955 a 9079 e "0" esigr esigr	and ff an n "N	. = I . = I	NSN RNN RSN RSN 2" ar 1N"	IN IN IN an	d "N	ISN	N"	ז" חן	NNN	IN"	and	"RI
Standard Standard and Ex t on DIN EN 60079 Reduced shaft rur Reduced shaft rur Ex type for cluster Note: 1 Cooling mode 2 Encoder "S1" a Encoder "S2" a	type for clu ff n-out, axia r II, catego "FN" is on and "M1" a and "M2" a and "M3" a	uster II, I run-ou I run-ou ries 3G Iy availa are only are only	cate it acc it acc it acc and able avai avai	gorie cordi cordi 3D with lable lable	es 30 ing to ing to on D hold e wit	G an o DIN o DIN DIN E ling I h oth	d 3D 1 429 N 429 N 429 N 60 EN 60 Dorake	955. 955 a 9079 e "0" esigr esigr	and ff an n "N	. = I . = I	NSN RNN RSN RSN 2" ar 1N"	IN IN IN an	d "N	ISN	N"	יי חן "ו	NNN	IN"	and	"RI
Standard	type for clu ff n-out, axia r II, catego "FN" is on and "M1" a and "M2" a and "M3" a	uster II, I run-ou I run-ou ries 3G Iy avail are only are only are only	cate it acc it acc it acc and able avai avai	gorie cordi cordi 3D with lable lable	es 30 ing to ing to on D hold e wit	G an o DIN o DIN DIN E ling I h oth	d 3D 1 429 N 429 N 429 N 60 EN 60 Dorake	955. 955 a 9079 e "0" esigr esigr	and ff an n "N	. = I . = I	NSN RNN RSN RSN 2" ar 1N"	IN IN IN an	d "N	ISN	N"	וי חן "ו	NNN	IN"	and	"RI
Standard Standard and Ex t on DIN EN 60079 Reduced shaft rur Reduced shaft rur Ex type for cluster Note: Cooling mode Encoder "S1" a Encoder "S2" a Encoder "S3" a	Type for clu ff n-out, axia r II, catego "FN" is on and "M1" a and "M2" a and "M3" a	uster II, I run-ou I run-ou ries 3G Iy avail are only are only are only	cates it acc it acc and able avai avai avai	gorie cordi 3D with lable lable	es 30 ing to ing to on D hold e wit e wit e wit	G an o DIN o DIN DIN E h oth h oth	d 3D N 429 N 429 N 429 N 60 EN 60 Dorake ner do ner do	955. 955 a 9079 e "0" esigr esigr	and ff an "N a "R a "N	. = 1 . = 1 1 = 1 NNN RNN	NSN RNN RSN ?" ar IN" IN" IN"	IN IN an an	d "N d "F	ISN RSN	N" N"				and	"RI
Standard Standard and Ex t on DIN EN 60079 Reduced shaft rur Reduced shaft rur Ex type for cluster Note: 1 Cooling mode 2 Encoder "S1" a Encoder "S2" a Encoder "S3" a Standard referen Standard	Type for clu ff n-out, axia r II, catego "FN" is on and "M1" a and "M2" a and "M3" a ce Edition	uster II, I run-ou I run-ou ries 3G Iy avail are only are only are only	cates tracc tracc tracc and avai avai avai Driv Key	gorie cordi cordi 3D with lable lable lable ge Ty way	es 30 ing to ing to on D hold e wit e wit vpe F s, De	G an o DIN o DIN DIN E ling I h oth h oth h oth	d 3D N 429 N 429 N 429 N 60 N 60 N 60 N 60 N 60 N 60 N 60 N 60	955. 955 a 9079 esigr esigr esigr s wit	and ff n "N n "N n "N	. = I . = I J = I NNI RNI NNI NNI	NSN RNN RSN IN" IN" IN"	IN IN an an	d "N d "F	ISN RSN n; P	N" N"	llel	Key	S,	and	"RI
Standard Standard and Ex t on DIN EN 60079 Reduced shaft rur Reduced shaft rur Ex type for cluster Note: 1 Cooling mode 2 Encoder "S1" a Encoder "S2" a Encoder "S3" a Standard referen Standard	Type for clu ff n-out, axia r II, catego "FN" is on and "M1" a and "M2" a and "M3" a ce Edition	uster II, I run-ou I run-ou ries 3G Iy avail are only are only	cates it account at account avait av	gorie cordi cordi 3D with lable lable lable lable ge Ty way grand	es 30 ing to ing to on D hold e wit e wit vpe F s, De cces c	G an o DIN o DIN DIN E ling I h oth h oth h oth h oth h oth h oth	d 3D N 429 N 429 N 429 N 60 N 60 N 60 N 60 N 60 N 60 N 60 N 60	955. 955 a 9079 esigr esigr esigr s wit	and ff an "N n "F n "N	. = I . = I = I d "2 NNI RNI NNI NNI ut T n ru	NSN RNN RSN IN" IN" IN" Ape ape	IN IN an an r A	d "N d "F	ISN RSN n; P	N" N"	llel	Key	S,	and	"RI
Standard	r II, catego "FN" is on and "M1" a and "M1" a and "M2" a and "M3" a ce Edition 1968-08	uster II, I run-ou I run-ou ries 3G Iy avail are only are only	cates it account at account avait av	gorie cordi cordi 3D with lable lable lable ge Ty way grand cotati	es 30 ing to ing to on D hold e witi e witi vpe F s, De ces c ing e	G an o DIN o DIN DIN E ling I h oth h oth h oth h oth h oth h oth h oth h oth h oth h oth	d 3D N 429 N 429 N 429 N 60 Drake ner de ner	955. 955 a 9079 esigr esigr esigr s wit	and ff an "N n "F n "N choi	. = I . = I = I d "2 NNI NNI NNI ut T n ru ery,	NSN RNN RSN IN" IN" IN" Ape n-ou test	IN IN and an r A	d "N d "F ctio	ISN SN n; P oun	N" N" ting	llel ı flaı	Key	S,	and	"RI

Fig.6-20: MSK071 type code (page 2)

6.10 MSK075 Type Code

																ZN-	40	003	-07	5_1	NOF	R_N	_EI	N_	20	10-0	08-1	1.fh	11
Abbrev.	1 2 3	4 5	6	7 8	9 (1	2 :	3 4	5	6 7	8	9	2 1	2	3	4 !	5 6	5 7	8	9	3 0	1 2	3	4	5	6	7	8 9	4
Example:	MSK		5	<u>E -</u>	02	2 0	0	- N	N	- S	2	- l	JG	i 1	-	RI	1 I	1											
Product																													
MSK = M	иsк																												
Size 075																													
075	=	075																											
Length																													
Lengths	=	= C, [D, E																										
Winding		000	0.0		045																								
MSK075C																													
MSK075D MSK075E																													
W3K075E	– 0	1200,	03	00,	040	U																							
Cooling mode																													
Liquid cooling							=	FN	່າ)																			
Natural convectio																													
Encoder 2	einaloti	urn H	lipe	rfac	ce,																								
Optical encoder,	Singlett		-						=	: S1																			
Optical encoder, s with 128 increme	nts					•••																							
Optical encoder, s with 128 increme Optical encoder, s	nts singletu	urn E	InDa	at2.	1,					~~~																			
Optical encoder, s with 128 increme Optical encoder, s with 2048 increme	nts singletu ents	 urn E	nDa	at2.	1, 				=	= S2																			
Optical encoder, s with 128 increme Optical encoder, s with 2048 increme Capacitive encod	nts singletu ents ler, sing	urn E	 EnDa 	at2. lipe	1, rfac	е,																							
Optical encoder, s with 128 increme Optical encoder, s with 2048 increme Capacitive encod with 16 incremen	nts singletu ents ler, sing ts	urn E urn E gletui	nDa nDa rn ⊢	at2. lipe	1, 	 e, 																							
Optical encoder, s with 128 increme Optical encoder, s with 2048 increme Capacitive encod with 16 incremen Optical encoder, s	nts singletu ents ler, sing ts multitur	urn E gletur 	nDa nDa rn ⊢ soli	at2. lipe	1, rfac Hip	e, erfa	 	•••	=	: S3																			
Optical encoder, s with 128 increme Optical encoder, s with 2048 increme Capacitive encod with 16 incremen Optical encoder, with 128 increme	nts singletu ents ler, sing ts multitur nts	urn E gletur rn-ab	nDa rn ⊢ soli	at2. lipe 	1, rfac Hip	e, erfa	 ace,		=	: S3																			
Optical encoder, s with 128 increme Optical encoder, s with 2048 increme Capacitive encod with 16 incremen Optical encoder, s with 128 increme Optical encoder, s	nts singletu ents ler, sing ts multitur nts multitur	gletur rn-ab	inDa rn H solu	at2. lipe ute ute	1, rfac Hip En[erfa	 ace, 2.1,		=	= S3 = M1	ĺ																		
Optical encoder, s with 128 increme Optical encoder, s with 2048 increme Capacitive encod with 16 incremen Optical encoder, s with 128 increme Optical encoder, s with 2048 increme	nts singletu ents ler, sing ts multitur nts multitur ents	gletur rn-ab	inDa rn H soli	at2. lipe ute ute	1, rfac Hip En[erfa	 ace, 2.1,	•••	=	= S3 = M1	ĺ																		
Optical encoder, s with 128 increme Optical encoder, s with 2048 increme Capacitive encod with 16 incremen Optical encoder, i with 128 increme Optical encoder, i	nts singletu ents ler, sing ts multitur nts multitur ents ler, mul	gletur gletur rn-ab	nDa nDa rn F solu	at2. lipe ute ute 	1, rfac Hip En[erfa Dat2	 ace, 2.1, 	 	= = =	= S3 = M1 = M2	1 2																		

Fig.6-21: MSK075 type code (page 1)

												ZN	-40	003-	075_	NC	R_I	N_E	N_2	2010)-08-	11.
Abbrev.	▶		1						2							3						
Column	1 2 3 4 e: M S K 0	5678	90	1 2	3 4	56	5 7	8 9	9 0	1	2 3	4	5	6 7	8 9	9 0	1	2 3	3 4	5	6 7	8
Exampl	e: MSK0	/ 5 E -	02	0 0	- N	N -	S	2 -	- U T	G	1∣- ⊤	R		N								
Electrical con	nection																					
Plug, rotatable	240°							. =	= U													
Shaft																						
Plain shaft with	shaft sealing	n rina (s	tanda	rd)					= (G												
Shaft with keyw																						
,	51					Ũ	0															
Holding brake																						
Without holding																						
Holding brake,	electrically-re	eleased	, 23 N	m .						= 1												
Holding brake,	electrically-re	eleased	. 30 N	m .						= 2												
noiung brake,																						
riolaling brake,			,																			
C																						
Other design	-										= N	NN	N									
Other design																						
Other design None Reduced shaft																						
Other design None Reduced shaft Note:	run-out, axia	I run-ou	t acco	ordir	ng to	DIN	 142	 95	 5.		= R	NN	N	~~~	4 "04	150						
Other design None Reduced shaft Note: ① Cooling mod	run-out, axia	l run-ou	t acco	rdir vith l	ng to engi	DIN	 I 42 E'' ar	 958 nd v	 5 . win	din	= R g "(NN 030	N 0"									
Other design None Reduced shaft Note: Cooling mod Encoder "S	run-out, axia de "FN" is on l" and "M1" a	l run-ou ly availa	t acco able w availa	rith I	engto	th "E	 I 42 E'' ar	nd v	win	din "Ni	= R g "(NN	NN)30 N'' a	N 0" and	۸ " b	ISN	N"	, ''					
Other design None Reduced shaft Note: Cooling mod Encoder "S2 Encoder "S2	run-out, axia de "FN" is on l" and "M1" a 2" and "M2" a	l run-ou ly availa are only are only	t acco able w availa availa	rith I able	engi with	th "En oth	 1 42 E" ar er c	nd v lesi	win	din "Ni "Ri	= R g "(NN NN	NN)30 N" a N" a	N 0" and	۸ " b	ISN	N"						
Other design None Reduced shaft Note: Cooling mod Encoder "S2 Encoder "S2	run-out, axia de "FN" is on l" and "M1" a	l run-ou ly availa are only are only	t acco able w availa availa	rith I able	engi with	th "En oth	 1 42 E" ar er c	nd v lesi	win	din "Ni "Ri	= R g "(NN NN	NN)30 N" a N" a	N 0" and	۸ " b	ISN	N"	μ					
Other design None Reduced shaft Note: Cooling mod Encoder "S2 Encoder "S2 Encoder "S3	run-out, axia de "FN" is on l" and "M1" a 2" and "M2" a 3" and "M3" a	l run-ou ly availa are only are only	t acco able w availa availa	rith I able	engi with	th "En oth	 1 42 E" ar er c	nd v lesi	win	din "Ni "Ri	= R g "(NN NN	NN)30 N" a N" a	N 0" and	۸ " b	ISN	N"	յո					
Other design None Reduced shaft Note: Cooling mod Encoder "S2 Encoder "S2 Encoder "S3 Standard refer	run-out, axia de "FN" is on I" and "M1" a 2" and "M2" a 3" and "M3" a ence	ly availa are only are only are only	able w availa availa availa	rith I able	engi with	th "En oth	 1 42 E" ar er c	nd v lesi	win	din "Ni "Ri	= R g "(NN NN	NN)30 N" a N" a	N 0" and	۸ " b	ISN	N"	yu					
Other design None Reduced shaft Note: Cooling mod Encoder "S2 Encoder "S2 Encoder "S3 Standard refer Standard	run-out, axia de "FN" is on l" and "M1" a 2" and "M2" a 3" and "M3" a ence Edition	ly availa are only are only are only	t acco able w availa availa availa Title	rith I able able	engt with with with	th "En oth	I 42 ar er o er o	nd v lesi lesi	win ign ign	din "NI "RI "NI	= R g "(NN NN	NN)30 N" ; N" ; N" ;	N 0" and and	d "N d "F	ISNI RSNI	N" N"						
Other design None Reduced shaft Note: Cooling mod Encoder "S2 Encoder "S2 Encoder "S3 Standard refer	run-out, axia de "FN" is on I" and "M1" a 2" and "M2" a 3" and "M3" a ence	ly availa are only are only are only	t acco able w availa availa availa Title Drive	rith I able able	engt with with with	th "En oth n oth n oth n oth	I 42	nd v lesi lesi lesi	win ign ign	din "NI "RI "NI	= R g "(NN NN	NN)30 N" ; N" ; N" ;	N 0" and and	d "N d "F	ISNI RSNI	N" N"		Ke	eys	,		
Other design None Reduced shaft Note: Cooling mod Encoder "S2 Encoder "S2 Encoder "S3 Standard refer Standard DIN 6885-1	run-out, axia de "FN" is on l" and "M1" a 2" and "M2" a 3" and "M3" a ence Edition 1968-08	l run-ou ly availa are only are only are only	t acco able w availa availa availa Title Drive Keyw	rith I able able Typ	engt with with with	th "En oth n oth n oth n oth aste	I 42 er c er c er c er c	959 nd v lesi lesi lesi s v er	win ign ign with	din "Ni "Ri "Ni	= R g "(NNI NNI NNI t Ta	NN)30 N" ; N" ; N" ;	N 0'' and and	d "N d "F	ISNI RSNI n; P	N" N"	allel					
Other design None Reduced shaft Note: Cooling mod Encoder "S2 Encoder "S2 Encoder "S3 Standard refer Standard	run-out, axia de "FN" is on l" and "M1" a 2" and "M2" a 3" and "M3" a ence Edition	l run-ou ly availa are only are only are only	t acco able w availa availa availa Title Drive	rith I able able able ryr vays	engi with with with	th "E n oth n oth n oth n oth eep F f sha	I 42 " ar er c er c er c er c	nd v lesi lesi lesi svte	win ign ign with	din "NI "RI "NI	= R g "(NNI NNI NNI t Ta	NN)30 N" ; N" ; Per -ou	N O'' and and r A	d "N d "F	ISNI RSNI n; P	N" N"	allel					

Fig.6-22: MSK075 type code (page 2)

6.11 MSK076 Type Code

													Z	N-4	100	03	07	6_I	NO	R_	N_	ΕN	۱_:	20 [.]	10	-08	3-1 ⁻	1.fh	1
Abbrev 1 2 3 4 5 6	7 0	1			F	0	7			2	0	2			~	-			3					F		7		0	
Column 1 2 3 4 5 6 Example: M S K 0 7 6	3 C -			3 4 - N	JN	6	S	8	- l		3 0	3	4 N	5 N	b N	N	8	9	0	1	2.	5 .	4	5	6	1	8	9	
	- T				T			-		Γ				••	••														L
Product																													
MSK = MSK																													
Size																													
Size 076= 076																													
Length																													
Length Lengths =	ل ک																												
Winding MSK076C= 0																													
MSK076C = 0)300,	045	0																										
Housing design					ļ																								
Natural convection				= Nſ	N																								
Encoder 1																													
Optical encoder, singleturn Hip	berfa	ce,																											
with 128 increments.					:	= S	51																						
Optical encoder, singleturn Enl																													
with 2048 increments					:	= S	52																						
Capacitive encoder, singleturn	Hipe	erfac	e,																										
with 16 increments					:	= S	53																						
Optical encoder, multiturn-abso																													
with 128 increments					:	= N	/ 1																						
Optical encoder, multiturn-abso	olute	EnD)at2.1	1,																									
with 2048 increments.						= N	/12																						
Capacitive encoder, multiturn-a	abso	lute I	Hiper	face) ,																								
with 16 increments						= N	//3																						
Electrical connection																													
										1																			

Fig.6-23: MSK076 type code (page 1)

		ZN-40003-076_NOR_N_EN_2010-08-11.
Abbrev. Column 1 Example: M	2 3 4 5 6 7 S K 0 7 6 C	1 2 2 3
Shaft		
Plain shaft with sha		(standard)=G
Shaft with keyway p	er DIN 6885-	1 with shaft sealing ring = P
Holding brake		
	ke	=0
		11 Nm = 1
ou		
Other design		
Standard and Ex tvi	be for cluster i	II categories 3G and 3D
		II, categories 3G and 3D = NSNN
on DIN EN 60079 ff	: 	II, categories 3G and 3D = NSNN out according to DIN 42955 = RNNN
on DIN EN 60079 ff Reduced shaft run- Reduced shaft run-	out, axial run- out, axial run-	out according to DIN 42955 = NSNN out according to DIN 42955 and
on DIN EN 60079 ff Reduced shaft run- Reduced shaft run-	out, axial run- out, axial run-	out according to DIN 42955 = RNNN
on DIN EN 60079 ff Reduced shaft run- Reduced shaft run- Ex type for cluster I	out, axial run- out, axial run-	out according to DIN 42955 = NSNN out according to DIN 42955 and
on DIN EN 60079 ff Reduced shaft run- Reduced shaft run- Ex type for cluster I Note:	out, axial run-o out, axial run-o I, categories 3	out according to DIN 42955 = RNNN out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN
on DIN EN 60079 ff Reduced shaft run- Reduced shaft run- Ex type for cluster I Note: 1 Encoder "S1" an	out, axial run-o out, axial run-o I, categories 3 od "M1" are on	out according to DIN 42955 = NSNN out according to DIN 42955 and
on DIN EN 60079 ff Reduced shaft run- Reduced shaft run- Ex type for cluster I Note: 1 Encoder "S1" an Encoder "S2" an	out, axial run-o out, axial run-o l, categories 3 d "M1" are on d "M2" are on	eut according to DIN 42955 = RNNN out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN
on DIN EN 60079 ff Reduced shaft run- Reduced shaft run- Ex type for cluster I Note: 1 Encoder "S1" an Encoder "S2" an	out, axial run-o out, axial run-o l, categories 3 d "M1" are on d "M2" are on	 NSNN out according to DIN 42955 = RNNN out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN and available with other design "NNNN" and "NSNN" and "RSNN"
on DIN EN 60079 ff Reduced shaft run- Reduced shaft run- Ex type for cluster I Note: 1 Encoder "S1" an Encoder "S2" an	out, axial run-o out, axial run-o l, categories 3 d "M1" are on d "M2" are on d "M3" are on	 NSNN out according to DIN 42955 = RNNN out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN and available with other design "NNNN" and "NSNN" and "RSNN"
on DIN EN 60079 ff Reduced shaft run- Reduced shaft run- Ex type for cluster I Note: 1 Encoder "S1" an Encoder "S2" an Encoder "S3" an	out, axial run-o out, axial run-o l, categories 3 d "M1" are on d "M2" are on d "M3" are on	 = NSNN out according to DIN 42955 = RNNN out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN hly available with other design "NNNN" and "NSNN" hly available with other design "RNNN" and "RSNN" hly available with other design "NNNN"
on DIN EN 60079 ff Reduced shaft run- Reduced shaft run- Ex type for cluster I Note: 1 Encoder "S1" an Encoder "S2" an Encoder "S3" an	out, axial run-o out, axial run-o l, categories 3 d "M1" are on d "M2" are on d "M3" are on e	 = NSNN out according to DIN 42955 = RNNN out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN hly available with other design "NNNN" and "NSNN" hly available with other design "RNNN" and "RSNN" hly available with other design "NNNN" and "RSNN"
on DIN EN 60079 ff Reduced shaft run- Reduced shaft run- Ex type for cluster I Note: 1 Encoder "S1" an Encoder "S2" an Encoder "S3" an Standard reference Standard DIN 6885-1	e Mark axial run-o but, axial run-o cout, axial run-o cout, axial run-o ad "M1" are on d "M1" are on d "M2" are on d "M3" are on e Edition 1968-08	 = NSNN out according to DIN 42955 = RNNN out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN hly available with other design "NNNN" and "NSNN" hly available with other design "RNNN" and "RSNN" hly available with other design "NNNN" and "RSNN"
on DIN EN 60079 ff Reduced shaft run- Reduced shaft run- Ex type for cluster I Note: 1 Encoder "S1" an Encoder "S2" an Encoder "S3" an Standard reference Standard	e but, axial run-o out, axial run-o out, axial run-o l, categories 3 d "M1" are on d "M2" are on d "M3" are on e Edition	 = NSNN out according to DIN 42955 = RNNN out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN available with other design "NNNN" and "NSNN" available with other design "RNNN" and "RSNN" available with other design "NNNN" and "RSNN" available with other design "NNNN" and "RSNN" brive Type Fastenings without Taper Action; Parallel Keys, Keyways, Deep Patter Tolerances of shaft extension run-out of mounting flanges
on DIN EN 60079 ff Reduced shaft run- Reduced shaft run- Ex type for cluster I Note: 1 Encoder "S1" an Encoder "S2" an Encoder "S3" an Standard reference Standard DIN 6885-1	e t t t t t t t t t t t t t	 = NSNN out according to DIN 42955 = RNNN out according to DIN 42955 and 3G and 3D on DIN EN 60079 ff = RSNN hly available with other design "NNNN" and "NSNN" hly available with other design "RNNN" and "RSNN" hly available with other design "NNNN" and "RSNN"

Fig.6-24: MSK076 type code (page 2)

6.12 MSK100 Type Code

																2	ZN-	400	003	-100	U_N	IOR	_N_			010	-08	-11.t	
Abbrev. Column Example	1 2 M S																				9	3 0	1 2	2 3	4	5	6	7 8	9
					J⊥ T	_			-		_	-	T	,	-					•									
Product																													
MSK =	MSK																												
Size																													
Size 100	:	= 1	100																										
Length]																								
Lengths	= /	۹, I	В, С	;, D	1																								
Winding 2																													
MSK100A = (0200.	03	00	045	50																								
		00	00,																										
	,				00,	045	50																						
MSK100B= 0	0200,	03	00,	040				1																					
MSK100B = 0 MSK100C = 0	0200, 0200,	03) 03)	00, 00,	040 030)1,			1																					
MSK100B = (MSK100C = (MSK100D = (0200, 0200,	03) 03)	00, 00,	040 030)1,			1																					
MSK100B = (MSK100C = (MSK100D = (Cooling mode	0200, 0200, 0200,	03) 03) 03)	00, 00, 00,	040 030 035)1, 50	045	50 (- 1																				
MSK100B = (MSK100C = (MSK100D = (Cooling mode	0200, 0200, 0200,	03) 03) 03)	00, 00, 00,	040 030 035)1, 50	045	50 (= N	IN																			
MSK100B = (MSK100C = (MSK100D = (<u>Cooling mode</u> Natural convection Encoder ③	0200, 0200, 0200,	03) 03) 03)	00, 00, 00,	040 030 035)1, 50	045	50 (= N	IN																			
MSK100B = (MSK100C = (MSK100D = (<u>Cooling mode</u> Natural convectio	0200, 0200, 0200, 0200,	030	00, 00, 00,	040	01, 0		50 (= N	IN																			
MSK100B= (MSK100C= (MSK100D= (Cooling mode Natural convection Encoder ③ Optical encoder, with 128 increme	0200, 0200, 0200, 0200, on	03(03) 03) 	00, 00, 00, 	040 030 035	01, 50	045 	50 (_			: S1																	
MSK100B = (MSK100C = (MSK100D = (Cooling mode Natural convection Encoder ③ Optical encoder, with 128 increme Optical encoder,	0200, 02000, 0200, 0200, 0200, 0200, 0200, 0200, 0200, 0200, 0200, 0200,	030 030 030 	00, 00, 00, 	040 030 035	01, 50 rfac	045 	50 (•••			. =																		
MSK100B = (MSK100C = (MSK100D = (Cooling mode Natural convection Encoder ③ Optical encoder, with 128 increme Optical encoder, with 2048 increme	o200, 0200, 0200, 0200, 0200, 00000, 00000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000	03(03(03(00, 00, 00, rn H rn E	040 030 035)1, 50 	045 		•••			. =																		
MSK100B = (MSK100C = (MSK100D = (Cooling mode Natural convection Encoder ③ Optical encoder, with 128 increme Optical encoder, with 2048 increme Capacitive encode	o200, 0200, 0200, 0200, 0200, 00000, 00000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000	03(03) 03(tur	00, 00, 00, rn H etur	040 030 035	o1, 50 rfac	045 	50 (•••		•••	. =	S2	2																
MSK100B = (MSK100C = (MSK100D = (Cooling mode Natural convection Encoder ③ Optical encoder, with 128 increme Optical encoder, with 2048 increme Capacitive encoon with 16 increment	o200, 0200, 0200, 0200, 00000, 00000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000	03(03) 03(tur 	00, 00, 00, etur	040 030 035 	01, 50 rfac at2.	045 	50 (•••	. =	S2	2																
MSK100B= (MSK100C= (MSK100D= (Cooling mode Natural convection Encoder ③ Optical encoder, with 128 increme Optical encoder, with 2048 increme Capacitive encoder with 16 increment Optical encoder,	o200, 0200, 0200, 0200, 00000, 00000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000	03(03) 03) tur tur 	00, 00, 00, rn H etur 	040 030 035 lipe nDa rn H	o1, 50 rfac lipe 	045 	50 (ce,		 e,	•••	. = . = . =	: S2 : S3	<u>2</u> 3																
MSK100B = (MSK100C = (MSK100D = (MSK100D = (Cooling mode Natural convection Encoder ③ Optical encoder, with 128 increme Optical encoder, with 2048 increme Capacitive encoder with 16 incremen Optical encoder, with 128 increme	o200, 0200, 0200, 0200, 0200, 00000, 00000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000	03(03) 03(tur ngle	00, 00, 00, etur 	040 030 035 inDa solu)1, 50 rfac at2. lipe	045 	50 (fac	 e,	•••	. = . = . =	: S2 : S3	<u>2</u> 3																
MSK100B = (MSK100C = (MSK100D = (MSK100D = (Cooling mode Natural convection Encoder ③ Optical encoder, with 128 increme Optical encoder, with 2048 increme Capacitive encoder, with 16 incremen Optical encoder, with 128 increme Optical encoder, with 128 increme Optical encoder,	o200, 0200, 0200, 0200, 0200, 00000, 00000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000	03(03) 03(tur tur urn	00, 00, 00, etur n-ab	040 030 035 inDa solu)1, 50 at2. lipe ute	045	50 (fac	 e, 	· · · · · ·	. = . = . =	: S2 : S3 : M ²	2 3 1																
MSK100B = (MSK100C = (MSK100D = (MSK100D = (Cooling mode Natural convection Encoder ③ Optical encoder, with 128 increme Optical encoder, with 2048 increme Capacitive encoder with 16 incremen Optical encoder, with 128 increme	o200, o200, o200, o200, on on single ents. single nents. der, sir nultituents.	03(03) 03(tur urn 	00, 00, 00, rn H etur n-ab 	040 030 035 inDa solu	rfac	048	50 (Da	 fac	 e, 	· · · · · ·	.= .= .=	: S2 : S3 : M ²	2 3 1																

Fig.6-25: MSK100 type code (page 1)

											ZN-	4000	3-10)0_N	OR	N_E	N_{-}	201	0-08)-11.
Abbrev.			1					2						3		1				
Column	1 2 3 4 5 6													9 0	1 :	2 3	4	5 6	5 7	8
Example	: M S K 1 0 0	B - 0	200) -	NN	- S 1	1 - /	AG	0	- N	I N	NN								
Electrical conne	ection ④						-	ΙT	Ī											
Connector, A-Sic	le						= A	.												
Connector, B-Sic																				
Connector, left .							= L													
Connector, right							= R	2												
o. <i>«</i>																				
Shaft Plain shaft with s	baft soaling rin	a (stan	dard)																	
Shaft with keywa																				
Holding brake	5																			
Without holding	orake							=												
Holding brake, e																				
Holding brake, e	lectrically-relea	sed, 70) Nm					. =	2											
Other design																				
Standard.									= 1	NNI	NN									
Standard and Ex																				
on DIN EN 6007									=	NSI	NN									
Reduced shaft ru																				
			acardi					and												
Reduced shaft ru																				
Reduced shaft ru Ex type for cluste										RSI	NN									
Ex type for cluste	er II, categories	3G an	d 3D	on [DIN E	EN 60	079	ð ff	=			NN''	and	1 "R	NN	N"				
Ex type for cluste Note: 1 Length "C" ar 2 Windings "04 Windings "03 3 Encoder "S1" Encoder "S2" Encoder "S3" 4 Looking from 5 Holding brake	er II, categories d winding "300 50" is only avai 01" is only avai and "M1" are o and "M2" are o and "M3" are o front onto drive e "1" is only ava	3G an " are o lable w lable w only ava only ava only ava in shaft ilable v	d 3D nly av ith otl ailable ailable ailable t (see with le	on [her her e with e with e with e with e mith e mith e ngt	DIN E able w desig desig th oth th oth th oth ture 1 h "A"	EN 60 yn "N yn "N her de her de her de	other NNN SNN esig esig	9 ff r de: N" a N" a n "N n "F	= I sigi nd nd NNI RNI	n "N "RI "RS NN" NN"	NNI SNI an	N" 1" d "N d "F	ISN RSN	1N" 1N"			٥			
Ex type for cluste Note: 1 Length "C" ar 2 Windings "04 Windings "03 3 Encoder "S1" Encoder "S2" Encoder "S3" 4 Looking from 5 Holding brake	er II, categories d winding "300 50" is only avai 01" is only avai and "M1" are o and "M2" are o and "M3" are o front onto drive	3G an " are o lable w lable w only ava only ava only ava in shaft ilable v	d 3D nly av ith otl ailable ailable ailable t (see with le	on [her her e with e with e with e with e mith e mith e ngt	DIN E able w desig desig th oth th oth th oth ture 1 h "A"	EN 60 yn "N yn "N her de her de her de	other NNN SNN esig esig	9 ff r de: N" a N" a n "N n "F	= I sigi nd nd NNI RNI	n "N "RI "RS NN" NN"	NNI SNI an	N" 1" d "N d "F ustr	ISN RSN ratio	IN" IN" on	exa	mpl			41	
Ex type for cluste Note: 1 Length "C" ar 2 Windings "04 Windings "03 3 Encoder "S1" Encoder "S2" Encoder "S3" 4 Looking from 5 Holding brake	er II, categories d winding "300 50" is only avai 01" is only avai and "M1" are o and "M2" are o and "M3" are o front onto drive e "1" is only ava	3G an " are o lable w lable w only ava only ava only ava in shaft ilable v	d 3D nly av ith otl ailable ailable ailable t (see with le	on [her her e with e with e with e with e mith e mith e ngt	DIN E able w desig desig th oth th oth th oth ture 1 h "A"	EN 60 yn "N yn "N her de her de her de	other NNN SNN esig esig	9 ff r de: N" a N" a n "N n "F	= I sigi nd nd NNI RNI	n "N "RI "RS NN" NN"	NNI SNI an	N" 1" d "N d "F	ISN RSN ratio	IN" IN" on	exa	mpl		nec	tion	= to
Ex type for cluste Note: 1 Length "C" ar 2 Windings "04 Windings "03 3 Encoder "S1" Encoder "S2" Encoder "S3" 4 Looking from 5 Holding brake	er II, categories d winding "300 50" is only avai 01" is only avai and "M1" are o and "M2" are o and "M3" are o front onto drive e "1" is only ava	3G an " are o lable w lable w only ava only ava only ava in shaft ilable v	d 3D nly av ith otl ailable ailable ailable t (see with le	on [her her e with e with e with e with e mith e mith e ngt	DIN E able w desig desig th oth th oth th oth ture 1 h "A"	EN 60 yn "N yn "N her de her de her de	other NNN SNN esig esig	9 ff r de: N" a N" a n "N n "F	= I sigi nd nd NNI RNI	n "N "RI "RS NN" NN"	NNI SNI an	N" 1" d "N d "F ustr	ISN RSN ratio	IN" IN" on	exa	mpl	onr	nec B- ^{SI}		= to
Ex type for cluste Note: 1 Length "C" ar 2 Windings "04 Windings "03 3 Encoder "S1" Encoder "S2" Encoder "S3" 4 Looking from 5 Holding brake	er II, categories d winding "300 50" is only avai 01" is only avai and "M1" are o and "M2" are o and "M3" are o front onto drive e "1" is only ava	3G an " are o lable w lable w only ava only ava only ava in shaft ilable v	d 3D nly av ith otl ailable ailable ailable t (see with le	on [her her e with e with e with e with e mith e mith e ngt	DIN E able w desig desig th oth th oth th oth ture 1 h "A"	EN 60 yn "N yn "N her de her de her de	other NNN SNN esig esig	9 ff r de: N" a N" a n "N n "N	= I sigi nd nd NNI RNI	n "N "RI "RS NN" NN"	NNI SNI an	N" 1" d "N d "F ustr	ISN RSN ratio	IN" IN" on	exa	mpl	onr			<u>= t</u>
Ex type for cluste Note: 1 Length "C" ar 2 Windings "04 Windings "03 3 Encoder "S1" Encoder "S2" Encoder "S3" 4 Looking from 5 Holding brake	er II, categories ad winding "300 50" is only avai 01" is only avai and "M1" are o and "M2" are o and "M3" are o front onto drive e "1" is only ava e "2" <u>is not</u> avai	3G an " are o lable w lable w only ava only ava only ava in shaft ilable v	d 3D nly av ith otl ailable ailable ailable t (see with le	on [her her e with e with e with e with e mith e mith e ngt	DIN E able w desig desig th oth th oth th oth ture 1 h "A"	EN 60 yn "N yn "N her de her de her de	other NNN SNN esig esig	9 ff r de: N" a N" a n "N n "N	= I sigi nd nd NNI RNI	n "N "RI "RS NN" NN"		N" 1" d "N d "F ustr	atio	IN" IN" on	exa	mpl	onr			= to
Ex type for cluste Note: 1 Length "C" ar 2 Windings "04 Windings "03 3 Encoder "S1" Encoder "S2" Encoder "S3" 4 Looking from 5 Holding brake Holding brake	er II, categories ad winding "300 50" is only avai 01" is only avai and "M1" are o and "M2" are o and "M3" are o front onto drive e "1" is only ava e "2" <u>is not</u> avai	3G an " are o lable w lable w only ava only ava only ava in shaft ilable v	d 3D nly av ith oth ailable ailable t (see with le ith ler	on [her her e with e with e with e with e mith e mith e ngt	DIN E able w desig desig th oth th oth th oth ture 1 h "A"	EN 60 yn "N yn "N her de her de her de	other NNN SNN esig esig	9 ff r de: N" a N" a n "N n "N	= I sigi nd nd NNI RNI	n "N "RI "RS NN" NN"		N" I" d "N d "F Pos	atio	IN" IN" on	exa	mpl	onr			= to
Ex type for cluste Note: 1 Length "C" ar 2 Windings "04 Windings "03 3 Encoder "S1" Encoder "S2" Encoder "S3" 4 Looking from 5 Holding brake Holding brake Standard refere	nd winding "300 50" is only avai 01" is only avai and "M1" are of and "M2" are of and "M3" are of front onto drive e "1" is only avai e "2" <u>is not</u> avail	3G an " are o lable w only ava only ava	d 3D nly av ith otl ailable ailable t (see with le ith ler	vaila her her e wit e wit e ngt ngth	DIN E ble w desig desig th oth th oth ture 1 h "A" "A"	EN 60 with o gn "N gn "N her de her de 1) ' and	oo79 other NNN SNN esig esig "B" s wi	9 ff n de: N" a N" a n "N n "N n "N	= I sigi nd nd NNI NNI	n "N "Rt NN" NN" NN"		N" d "N d "F Pos	ISN catio iition		ent	mpl er c	onr			= to
Ex type for cluste Note: 1 Length "C" ar 2 Windings "04 Windings "03 3 Encoder "S1" Encoder "S2" Encoder "S3" 4 Looking from 5 Holding brake Holding brake Holding brake	er II, categories nd winding "300 50" is only avai 01" is only avai and "M1" are of and "M2" are of and "M3" are of front onto drive e "1" is only avai e "2" <u>is not</u> avail	3G an " are o lable w lable w only ava only only only only only only only only only only only only only only only only	d 3D nly av ith otl ailable ailable t (see with le ith ler ive Ty yway lerand	vaila her her e wit pict e wit pict e ngt ngth	DIN E ble w desig desig th oth th oth ture 1 h "A" "A" Faste beep I of sha	EN 60 with o gn "N gn "N her de her de 1) ' and ' and Patte aft ex	oo79 other NNN SNN esig esig esig "B" "B"	e ff r de: N" a N" a n "N n "N n "N sior	= I sign nd nd NI NI NI NI NI NI	n "N "Rt NN" NN" 	NNI SNI an an Pie Pie	N" d "N d "F Pos	ratio iition	IN" IN" on of		mpl er c	onr			= t
Ex type for cluste Note: 1 Length "C" ar 2 Windings "04 Windings "03 3 Encoder "S1" Encoder "S2" Encoder "S3" 4 Looking from 5 Holding brake Holding brake Holding brake DIN 6885-1	nce Edition 1981-12	3G an " are o lable w lable w only ava only only only ava only	d 3D nly av ith otl ailable ailable t (see with le ith ler	vaila her her pick e wit e wit e wit e wit e wit s, pick s, D ces ing o	DIN E able w desig desig th oth th oth th oth th oth th ath "A" Faste peep l of sha electr	EN 60 with o gn "N gn "N her de her de her de her de her de her de her de her de ner de ner de ner de ner de ner de	other NNN SNN esig esig "B" s wi er er er mac	ff r de: N" a N" a N " A n "N n "N thou sior hine	= I sigu nd nd NNI NNI NNI NNI NNI	n "N "Rt NN" NN" 	Pider A	N" d "N d "F Pos ctur actio	ratio	IN" IN" on of n of Para	eft de allel g fla	mpl er c Key nge	vs,	B-si		= to

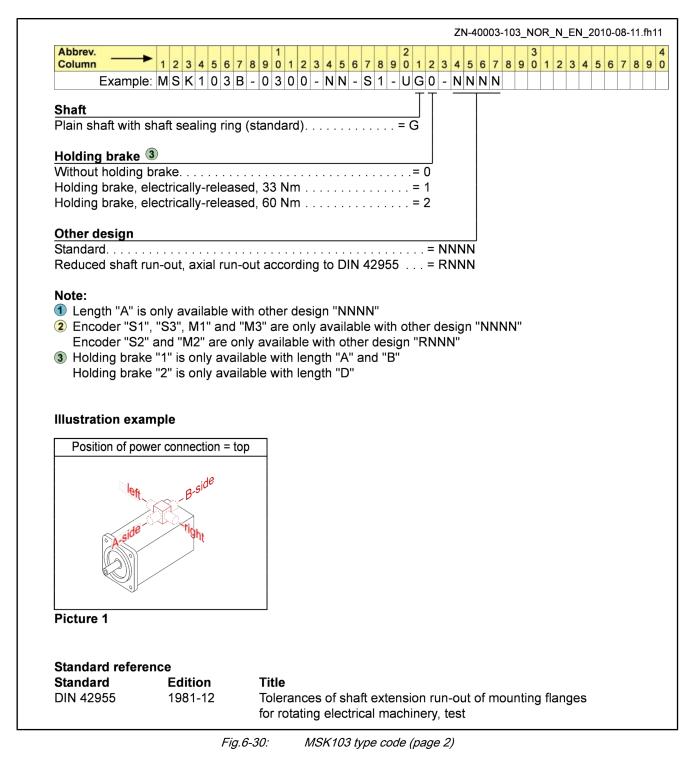
Fig.6-26: MSK100 type code (page 2)

6.13 MSK101 Type Code

															Z	ZN-	40	003	3-1	01_	NC	DR_	_N	_E	N_	_20	10-	-08-	11.1	ĥ11
Abbrev. Column 1 2 Example: M S	3 4 5 K 1 C	5 6 D 1 1	7 8 D -	9 <mark>0</mark> 0 2	1 2 0 0	3	4 ! N 1	5 6 N -	7 S	8 1	9	2 0 A	1 2 G (2 3	4 N	5 N	6 N	7 N	8	9	30	1	2	3	4	5	6	7	8 9	4 0
Product MSK = MSK			T					_																						
Size 101	= 101																													
Length ①	= C, I	D, E																												
Winding 2 MSK101C = 0200, MSK101D = 0200, MSK101E = 0200,	0300	, 030	01,																											
Cooling mode Natural convection																														
Liquid cooling						- F	IN																							
Optical encoder, single with 128 increments. Optical encoder, single with 2048 increments.	eturn E	EnDa	 at2.	 1, 																										
Capacitive encoder, sir with 16 increments Optical encoder, multitu with 128 increments	urn-at	 bsol	 ute	 Hipe	rfac	e,																								
Optical encoder, multitu with 2048 increments.	urn-at	bsol	ute	EnD	at2.′	1, 																								
with 16 increments								. =	M3	}																				

Fig.6-27: MSK101 type code (page 1)

		ZN-40003-101_NOR_N_EN_2010-08-11.fh11
Abbrev. Column 1 2 Example: M S	3 4 5 6 7 K 1 0 1 D	8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
Connector, B-Side Connector, left Connector, right Shaft	· · · · · · · · · · · · · · · · · · ·	
Shaft with keyway per Holding brake (5) Without holding brake Holding brake, electric	DIN 6885-1	with shaft sealing ring = P = 0 d, 70 Nm = 2 d, 120 Nm = 3
Standard and Ex type on DIN EN 60079 ff . Reduced shaft run-ou Ex type for cluster II, o Note: 1 Length "E" is only 2 Windings "0300" a Winding "0301" is 3 Encoder "S1" and Encoder "S2" and Encoder "S3" and 4 Looking from front 5 Holding brake "3" j	for cluster II, t, axial run-oi t, axial run-oi categories 30 available with nd "0450" are only available "M1" are only "M2" are only "M3" are only onto driven s is not availab	
Illustration example		are not available with cooling mode in a lid holding brake 5
		Position of power connection = top
Standard reference Standard DIN 6885-1	Edition 1968-08	Title Drive Type Fastenings without Taper Action; Parallel Keys, Keyways, Deep Patter
DIN 42955 DIN EN 60079 ff	1981-12	Tolerances of shaft extension run-out of mounting flanges for rotating electrical machinery, test Electrical apparatus for explosive gas atmospheres (ATEX)
	-	\Box control apparatus for explosive gas attrosplicies (ALCA)


Fig.6-28: MSK101 type code (page 2)

6.14 MSK103 Type Code

																ZN	-40	00	3-1	03_	NC	DR	_N_	EN	I_2	010	0-0	8-11	.fh1
Abbrev.					1							2	2									3							
Column Example:		56			1	_			-		8 9									8	9 (0 1	1 2	3	4	5	6	7	8 9
Example:	M S K 1		в - т	0	3 0	0	- N		-	5	1	- יע ד		5 0	- '	IN	IN	N	N										
Product																													
MSK = M	SK																												
Size																													
Size 103	= 10	3																											
Length ① Lengths			ĺ																										
	=A	, В, L	J																										
Winding																													
MSK103A			. = 1	030	0																								
MSK103B			. = (030	0																								
MSK103D			. = (030	0																								
					-																								
Cooling mode																													
Natural convection	1					. =	١N	Ī																					
Encoder 2																													
Optical encoder, si										~ 4																			
with 128 increment						• •		• •	= 5	51																			
Optical encoder, si									_ <	20																			
with 2048 incremen						• •		• •	= :	52																			
Capacitive encode with 16 increments									_ c	22																			
Optical encoder, m								• •	- 0	55																			
with 128 increment									= ^	11																			
Optical encoder, m								• •	- 0	VI																			
with 2048 increment							·		= N	M2																			
Capacitive encode																													
									= N	MЗ																			
with 16 increments																													
with 16 increments																													
	tion																												

Fig.6-29: MSK103 type code (page 1)

6.15 MSK131 Type Code

			ZN-40003-13	31_NOR_N_EN_2010-08-11.fh11
	4 5 6 7 8 9 0 1 3 1 D - 0 2		2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 1 - A G 0 - N N N	3 3 4 5 6 7 8 9 9
Example: M S K Product MSK MSK = MSK Motor size 131 131 = 1 Motor length	31 . = B, D	<u>0 0 - NN - S</u>	<u>1 - A G U - N N N N</u>	
MSK131D MSK131D Cooling mode Natural convection	= 0200	= NN		
Optical encoder, singletur with 128 increments Optical encoder, singletur with 2048 increments Capacitive encoder, single with 16 increments Optical encoder, multiturn	n EnDat2.1, eturn Hiperface,	= S2		
with 128 increments Optical encoder, multiturr with 2048 increments Capacitive encoder, multi with 16 increments	-absolute EnDa turn-absolute H	= M1 at2.1, = M2 iperface,		

Fig.6-31: MSK131 type code (page 1)

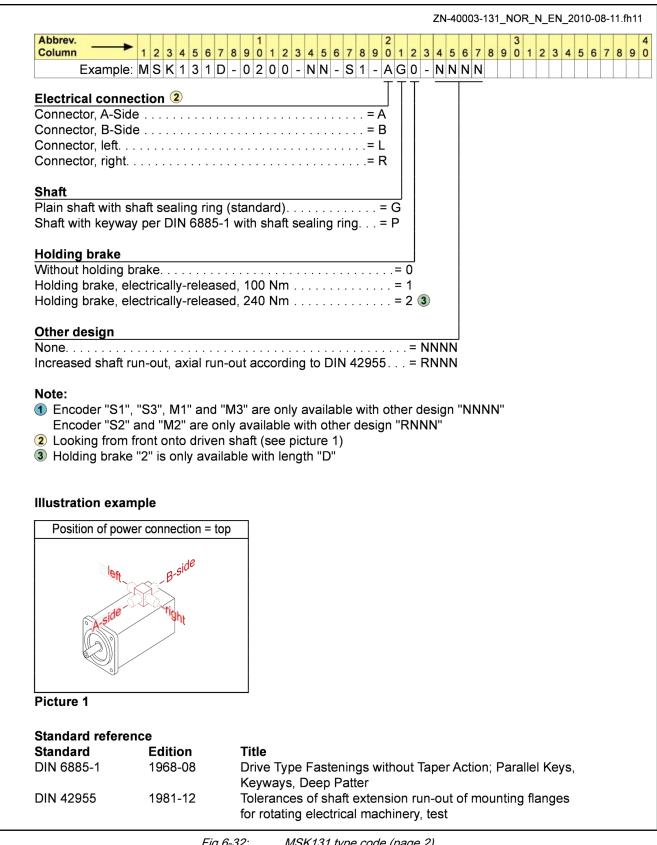


Fig.6-32: MSK131 type code (page 2)

7 Fan Units for MSK Motors

7.1 Field of Application of Fan Units

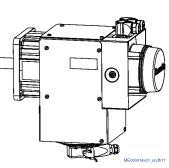
MSK motors from size 060 can be equipped with fan units. The fan units LEM are available as accessory. Special motors can be delivered with factory-mounted fan units. Fan units are intended for mounting on motors used in high repetition rates or continuous operation.

NOTICE

Damage to property due to improper application of motors with fan units

Motors with mounted fan units are not suited for applications with continuous shock load, e.g. pressing, squeezing, chargers, ...

In such a case, use motors with bigger performance without fan units .


The following frame sizes are available.

Axial

For applications that make a slight frame size necessary.

Radial

For applications that make a short frame size necessary.

۲

7.2 Technical Data of Fan Units

Туре	Degree of protection ¹⁾	UL	U _N [V]	f _N [Hz]	I _N [A]	L _P [dB(A)]	m _L [kg]
LEM-AB-116T-11-NNNN	IP 65	self protec-	115 +100/	60	042	-75	2.3
LEM-RB-116T-11-NNNN	1 1 05	ted	115 ±10%	60	042	<75	3.0
LEM-AB-116T-21-NNNN	IP 65	self protec-	220 ±10%	50/60	0.19/0.17	<75	2.3
LEM-RB-116T-21-NNNN	1F 05	ted	230 ±10%		0.19/0.17	<75	3.0
LEM-AB-140T-11-NNNN	IP 65	self protec-	115 + 100/	60	0.44	<75	3.1
LEM-RB-140T-11-NNNN		ted	115 ±10%	60	0.44	5</td <td>3.5</td>	3.5
LEM-AB-140T-21-NNNN	IP 65	self protec- ted	230 ±10%	50/60	0.20 / 0.18	<75	3.1
LEM-RB-140T-21-NNNN							3.5
LEM-AB-192T-11-NNNN	IP 65	self protec-	115 ±10%	60	0.40	<75	4.3
LEM-RB-192T-11-NNNN		ted	115 ±10%	00	0.48	<75	3.6
LEM-AB-192T-21-NNNN	IP 65	self protec-	230 ±10%	50/60	0.21 / 0.20	<75	4.3
LEM-RB-192T-21-NNNN		ted	230 ±10%	50/60	0.21/0.20	\$75	3.6
LEM-AB-260N-32-NNNN	IP 65	-	400 480	50/60	0.12 / 0.15 ²⁾	<75	8.6

1)

specified protection mode valid for fan motor; for further information about protection modes refer to chapter 9.2 "Degree of Protection" on page 212.

2) Powe *Fig.7-1: Techi*

Power consumption at 400V *Technical data of fan units*

ZN-40004-001_NOR_N_EN_2008-09-12.fh11 Abbrev. 2 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 Column Example: L E M - A B - 1 9 2 N - 2 1 - N N N N Туре LEM. = LEM Cooling mode Radial = R **Cooling direction** Blowing....=B Dimension of flange 1 116 mm = 116 192 mm = 192 260 mm = 260 Construction Standard = N Thermal protection. = T Nominal voltage 3 x AC 400...480 V, 50/60 Hz..... = 3 Electrical connection Connector 1 x AC = 1 Connector 3 x AC = 2 Other design Note: Dimension of flange "116", "140" and "192" are only available with construction "T", nominal voltage "1" and "2" and eletrical connection "1" Dimension of flange "260" ist only available mit cooling mode "A", construction "N", nominal voltage "3" and electrical connection "2"

7.3 Type Code for Fan Units

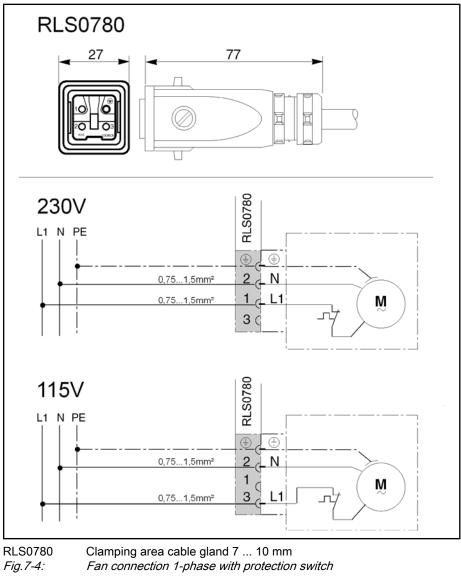
Fig.7-2: Type code of fan units LEM for MSK motors

7.4 Fan Units Selection Table

LEM-LEM-LEM-LEM-LEM-LEM-LEM-AB-116T-**RB-116T-**AB-140T-**RB-140T-**AB-192T-**RB-192T-**AB-260N-DD-NNNN DD-NNNN MSK060B-000-NN-00-000 MSK060B-000-NN-00-001-0000 MSK060C-000-NN-00-000 _ _ _ MSK060C-0000-NN-00-001-0000 . _ _ _ _ _ MSK061B-000-NN-00-000 _ _ _ _ _ _ _ MSK061B-000-NN-00-001-0000 -------MSK061C-000-NN-00-000 -----MSK061C-000-NN-00-001-0000 -----MSK070C-000-NN-00-000-000 _ ---_ -MSK070C-0000-NN-00-001-0000 -MSK070D-000-000-000-000 -MSK070D-000-NN-00-001-0000 -MSK070E-000-NN-00-000 MSK070E-0000-NN-00-001-0000 MSK071C-000-NN-00-000 MSK071C-0000-NN-00-001-0000 . . MSK071C-000-NN-00-002-000 . MSK071D-000-NN-00-000 . MSK071D-0000-NN-00-001-0000 MSK071D-000-NN-00-002-0000 MSK071E-000-NN-00-000 _ _ _ _ _ MSK071E-000-NN-00-001-000 . MSK071E-000-NN-00-002-0000 MSK075C-000-NN-00-000-000 . _ MSK075C-0000-NN-00-001-0000 . . MSK075C-0000-NN-00-002-0000 MSK075D-000-NN-00-000 . MSK075D-000-NN-00-001-000 . . MSK075E-000-NN-00-000 . . MSK075E-0000-NN-00-001-0000 . _ -_ --MSK075E-0000-NN-00-002-0000 -----MSK075E-0000-NN-00-003-0000 ----MSK076C-0000-NN-00-000-0000 -. П _ -_ -MSK076C-000-NN-00-001-0000 -_ _ _ MSK100A-000-NN-00-000 MSK100A-000-NN-00-001-0000 MSK100B-000-NN-00-000-000 MSK100B-000-NN-00-001-0000 MSK100B-000-NN-00-002-000 -MSK100C-000-NN-00-000-000 --MSK100C-000-NN-00-001-0000 --MSK100C-0000-NN-00-002-0000 . -MSK100D-0000-NN-00-000 . -MSK100D-0000-NN-00-001-0000 MSK100D-0000-NN-00-002-0000 _ _ MSK101C-000-NN-00-000 П _ MSK101C-000-NN-00-002-0000 _ _ MSK101D-000-NN-00-000-000 MSK101D-0000-NN-00-001-0000 -MSK101D-000-NN-00-002-000 MSK101D-0000-NN-00-003-0000 MSK101E-000-NN-00-000 -MSK101E-0000-NN-00-001-0000 . . _ _

Select the fan unit for the motor type required from the following table

DOK-MOTOR*-MSK******-PR09-EN-P Rexroth IndraDyn S MSK Synchronous Motors

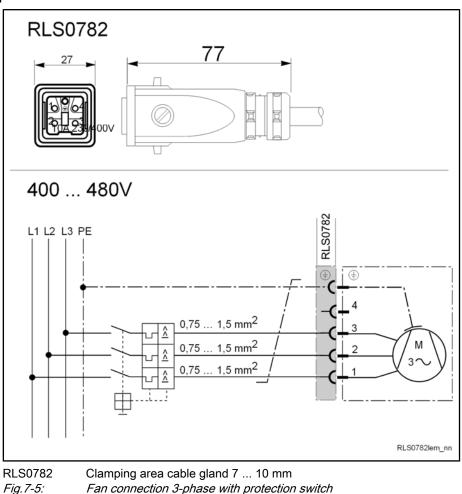

Fan Units for MSK Motors

	LEM- AB-116T- □□-NNNN	LEM- RB-116T- □□-NNNN	LEM- AB-140T- □□-NNNN	LEM- RB-140T- □□-NNNN	LEM- AB-192T- □□-NNNN	LEM- RB-192T- □□-NNNN	LEM- AB-260N- □□-NNNN		
MSK101E-0000-NN-00-002-0000	-	-	-	-		•	-		
MSK101E-0000-NN-00-003-0000	-	-	-	-		•	-		
MSK103A-000-NN-00-000-0000	-	-	-	-	-	-	-		
MSK103A-0000-NN-00-001-0000	-	-	-	-	-	-	-		
MSK103B-000-NN-00-000-0000	-	-	-	-	-	-	-		
MSK103B-0000-NN-00-001-0000	-	-	-	-	-	-	-		
MSK103D-000-NN-00-000-0000	-	-	-	-	-	-	-		
MSK103D-000-NN-00-002-0000	-	-	-	-	-	-	-		
MSK131B-000-NN-00-000-0000	-	-	-	-	-	-			
MSK131B-000-NN-00-001-0000	-	-	-	-	-	-			
MSK131D-000-NN-00-000-0000	-	-	-	-	-	-			
MSK131D-000-NN-00-001-0000	-	-	-	-	-	-			
MSK131D-000-NN-00-002-0000	-	-	-	-	-	-			
	- ■ □ Fig.7-3:	not deliverable, assembly not possible ex works mounted deliverable deliverable as adapter kit. <i>Selection table motor - fan unit</i>							
	R	Mountin	g order for a	as "adapter	kit □" delive	red fan unit	S:		
		1.	Flai chir	nge on the r ne	notor witho	ut fan unit o	nto the ma		

Mount the fan unit

2.

- 7.5 Fan Units Electrical Connection
- 7.5.1 Connection 1-phase



LEM fan units in design "T" with integrated thermo protection do not need any circuit with external motor protection switch.

R ²	Protection from false connection!
	• 230V: L1 auf Pin 1

• 115V: L1 auf Pin 3

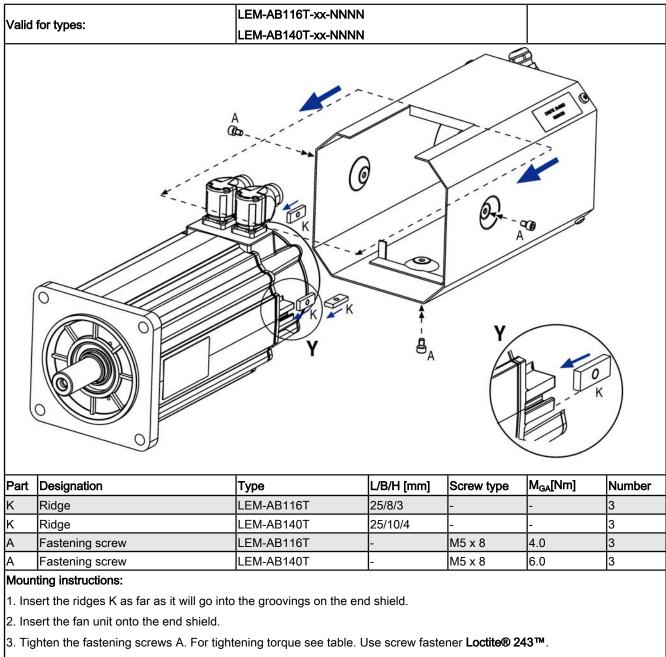
7.5.2 Connection 3-phase

Protection due to motor protection switch

The activation of the fan units is done via the adjustable motor protection device.

The activate principle of the motor protection switch is based on the fact that the motor current-carrying bimetal trip heats up faster than the motor winding and it separates this from the mains before critical temperature values are reached.

The motor protection switches are adjusted to the rated current of the fan unit. Heed when selecting the motor protection switch that the adjustable range must agree with the rated current of the fan unit.


7.6 Ordering Fan Units

Motor with attached fan unit In order to procure a motor with attached fan unit, the type designation of the fan unit must be specified as an ordering subitem of the motor with the fan arrangement desired.

	Ordering item 1	Ordering designation Synchronous motor MSK100B-0300-NN-S1-BG1-NNNN
	1.1	Fan unit LEM-AB-192T-11-NNNN mounted on position 1
Motor with separate fan unit	•	an independent ordering item, the fan unit is supplied sep- notor (i.e. not attached to the latter).

Ordering item	Ordering designation
1	Synchronous motor MSK100B-0300-NN-S1-BG1-NNNN
2	Fan unit LEM-AB-192T-11-NNNN

7.7 Assemble Fan Units7.7.1 Assembly Fan Unit Axial, Flange dimension 116/140

4. Electrical connection according to the connection plan.

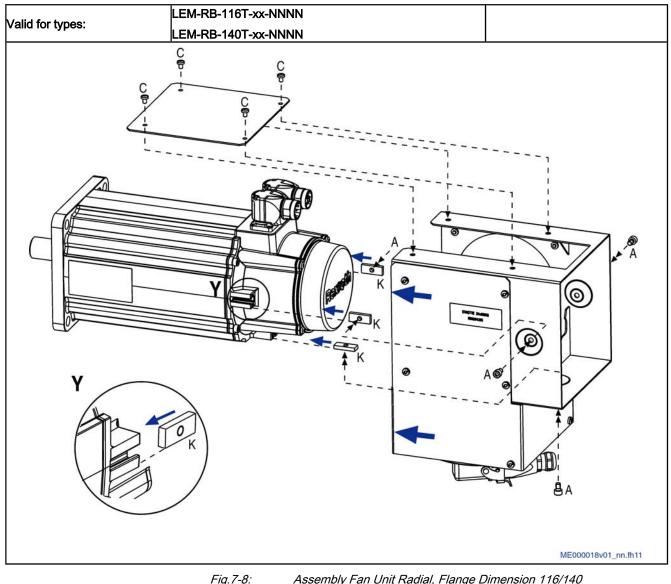
Fig.7-6: Assembly fan unit sxial, flange dimension 116/140

7.7.2 Assembly Fan Unit Axial, Flange Dimension 192

/alid f		LEM-AB-192N-xx-NNNN				
alid to	or types:	LEM-AB-192T-xx-NNNN				
		A A A C A A A A A A A A A A A A A A A A				
		Y				
Part	Designation	Туре		1	5000026v01_nn.fh11 MGA[Nm]	Numbe
i	Designation Ridge		L/B/H [mm] 113/8/3	ME Screw type	5000026v01_nn.fh11 MgA[Nm] -	Number 4
Л				1		Number 4 8

1. Insert the ridges M into the groovings on the housing.

2. Insert the fan unit as far as it will go onto the housing.


3. Tighten the fastening screws A. Tightening torque see table. Use screw fastener Loctite® 243™.

4. If necessary loosen the cover of the encoder cable output, connect the encoder cable and mount the cover. Refer to the table for tightening torque of the fastening screws for the cover encoder cable output.

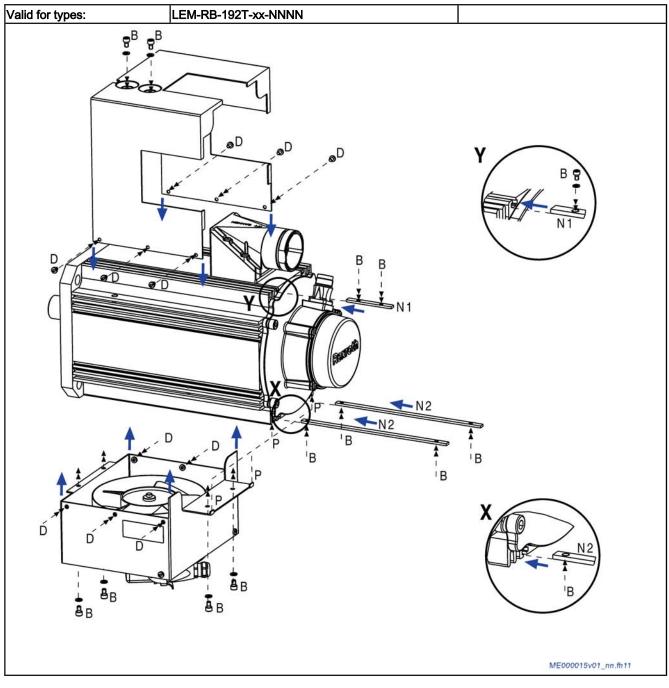
5. Electrical connection according to the connection plan.

Fig.7-7: Assembly fan unit axial, flange dimension 192

Assembly Fan Unit Axial, Flange Dimension 116/140 7.7.3

Fig.7-8: Assembly Fan Unit Radial, Flange Dimension 116/1	140
---	-----

Part	Designation	Туре	L/B/H [mm]	Screw type	M _{GA} [Nm]	Number
К	Ridge	LEM-AB116T	25/8/3	-	-	3
к	Ridge	LEM-AB140AT	25/10/4	-	-	3
А	Fastening screw	LEM-AB116N T	-	M5 x 8	4.0	3
А	Fastening screw	LEM-AB140AT	-	M5 x 8	6.0	3
С	Fastening screw	LEM-AB116NT	-	M4 x 6	3.1	4


DOK-MOTOR*-MSK******-PR09-EN-P Rexroth IndraDyn S MSK Synchronous Motors

Fan Units for MSK Motors

Part	Designation	Туре	L/B/H [mm]	Screw type	M _{GA} [Nm]	Number			
С	Fastening screw	LEM-AB140AT	-	M4 x 6	3.1	4			
Moun	iting instructions:								
1. Ins	ert the ridges K as far as it will go into	the groovings on the e	end shield.						
2. Ins	ert the fan unit onto the end shield.								
3. Tig	hten the fastening screws A. For tight	ening torque see table	. Use screw fast	ener Loctite® 2	43™.				
4. Mc	4. Mount the cover plate with fastening screws C. For tightening torque see table.								
5. Ele	ectrical connection according to the co	nnection plan.							

Fig. 7-9: Assembly fan unit radial, flange dimension 116/140

7.7.4 Assembly Fan Unit Radial, Flange Dimension 192

Part	Designation	Туре	L/B/H [mm]	Screw type	M _{GA} [Nm]	Number
N1	Ridge	LEM-RB192T	73/8/3	-	-	1
N2	Ridge	LEM-RB192T	223/8/3	-	-	2
В	Fastening screw	LEM-RB192T	-	M5 x 10	4.0	6

Part	Designation	Туре	L/B/H [mm]	Screw type	M _{GA} [Nm]	Number
D	Fastening screw	LEM-RB192T	-	M4 x 8	3.1	6
Mounting instructions:						
1. Insert the ridges N2 into the groovings onto the housing (see item X).						
2. Fasten the fan top with the fastening screws B (4 pieces) into the ridges N2 on the motor housing. Use the limit stop P for positioning. For tightening torque see table.						
1	3. Mount the cover with the fastinging screws D on the fan top. For tightening torque see table. Use screw fastener Loc- tite® 243™.					

4. Insert the ridges N1 into the groovings onto the housing (see item Y).

5. Screw the cover with fastening screws B (2 pieces) into the ridge N1. For tightening torque see table.

6. Electrical connection according to the connection plan.

Fig.7-10: Assembly fan unit radial, flange dimension 192

7.7.5 Assembly Fan Unit Axial, Flange Dimension 260

	for types:	LEM-AB-260N-xx-NNN	<u>N</u>			
		B A Go. A Go. K O. K	R C K			SCA SCA
					D ME00003	:1v01_nn.fh11
Part	Designation	Туре	L/B/H [mm]	Screw type	ME00003 MGA[Nm]	1v01_nn.fh11 Number
Part <	Designation Ridge	Type LEM-AB260N	L/B/H [mm] 110x10x3	-	M _{GA} [Nm] -	Number 4
<	*	LEM-AB260N LEM-AB260N		- M5x6	M _{GA} [Nm] - 6,1	Number
	Ridge	LEM-AB260N		-	M _{GA} [Nm] -	Number 4

Mounting instructions:

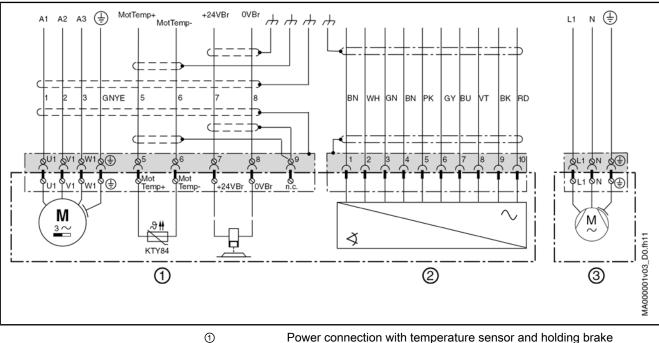
1. Insert the ridges K into the groovings onto the housing (see item Y).

2. Fasten the fan top with the fastening screws A (8 pieces) into the ridges K on the motor housing. Use the fastening screws C for positioning. For tightening torque see table. Use screw fastener **Loctite® 243™**.

3. If necessary loosen the cover of the encoder cable output, connect the encoder cable and mount the cover. Refer to the table for tightening torque of the fastening screws for the cover encoder cable output.

4. Electrical connection according to the connection plan.

Fig.7-11: Assembly Fan Unit Axial, Flange Dimension 260


8.1 **Electric Connection Technique Overview**

The electrical connections of IndraDyn S motors are standardized over all frame sizes. IndraDyn S motors are provided with

- a power connector, incl. connection for temperature sensor and holding . brake,
- an encoder connection.

Both connectors are designed as plug-in connectors. When ready-made cables of Rexroth are used, a simple, fast and error-free assembly and commissioning is ensured.

The interconnection diagram applies to all IndraDyn S motors.

Power connection	ith temperature sensor and holding brake
Encodor connectio	

2 Encoder connection 3

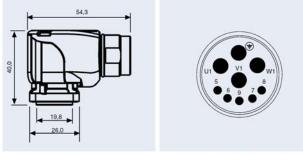

optional fan connection (operation with a fan unit is not permitted for motors in ATEX design!)

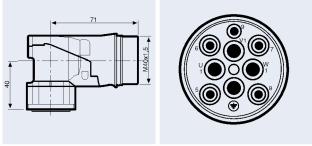
Fig.8-1: Overview of IndraDyn S connections I

Motor	Flange socket power	Flange socket encoder
MSK030	RLS1100	RGS1000
MSK040	RLS1100	RGS1000
MSK043 1)	RLS1100	RGS1000
MSK050	RLS1100	RGS1000
MSK060	RLS1100	RGS1000
MSK061	RLS1100	RGS1000
MSK070	RLS1200	RGS1000
MSK071	RLS1200	RGS1000
MSK075 1)	RLS1200	RGS1000
MSK076	RLS1100	RGS1000
MSK100	RLS1300	RGS1003
MSK101	RLS1300	RGS1003
MSK103A 1)	RLS1100	RGS1000

Motor	Flange socket power	Flange socket encoder
MSK103B 1)	RLS1200	RGS1000
MSK103D 1)	RL31200	RGS1000
MSK131 1)	RLS1300	RGS1003
1) <i>Fig.8-2:</i>	Motor not availabe in ATEX design Connector on MSK motors	

8.2 Flange Socket RLS1100

KM000015v01_nn.fh11


Pin Assignment RLS1100, Flange Socket

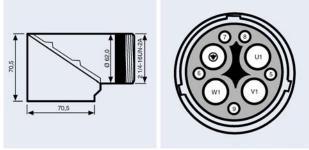
Designation	Description
U1, V1, W1	Power
PE	Grounding conductor
5	Temperature sensor KTY84 (MotTemp+)
6	Temperature sensor KTY84 (MotTemp-)
7 (optional)	Holding brake (+24VBr)
8 (optional)	Holding brake (0VBr)
9	n.c.

Technical Data RLS 1100, Flange Socket

Designation		Description
Degree of Protection		IP67 (connected)
Temperature range		-40 +125 °C
Ambient temperature in operation		40 °C
Contact type		Pins
Rated voltage		630 V / 125 V
Rated current		23 A
Degree of pollution		3
Overvoltage category		III (according to DIN VDE 0110)
Power connector (related)		RLS1101, RLS1108 ¹⁾
	1) RLS110 power v	01 for power wire cross-section 1.0 and 1.5 mm ² ; RLS1108 for wire cross-section 2.5 mm ²

8.3 Flange Socket RLS1200

KM000012v02_nn.fh11


Pin Assignment RLS1200, Flange Socket

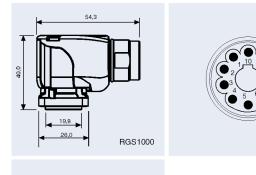
Designation	Description
U1, V1, W1	Power
PE	Grounding conductor
5	Temperature sensor KTY84 (MotTemp+)
6	Temperature sensor KTY84 (MotTemp-)
7 (optional)	Holding brake (+24VBr)
8 (optional)	Holding brake (0VBr)
9	n.c.

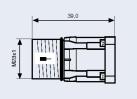
Technical Data - Flange Socket RLS1200

Designation	Description
Degree of Protection	IP67 (connected)
Temperature range	-40 +125 °C
Ambient temperature in operation	40 °C
Contact type	Pins
Rated voltage	630 V / 125 V
Rated current	57 A
Degree of pollution	3
Overvoltage category	III (according to DIN VDE 0110)
Power connector (related)	RLS1201

8.4 Flange Socket RLS1300

KM000010v01_nn.fh11


Pin Assignment RLS1300, Flange Socket


Designation	Description
U1, V1, W1	Power
PE	Grounding conductor
5	Temperature sensor KTY84 (MotTemp+)
6	Temperature sensor KTY84 (MotTemp-)
7 (optional)	Holding brake (+24VBr)
8 (optional)	Holding brake (0VBr)
9	n.c.

Technical Data - Flange Socket RLS1300

Designation	Description
Degree of Protection	IP67 (connected)
Temperature range	-40 +125 °C
Ambient temperature in operation	40 °C
Contact type	Pins
Rated voltage	600 V
Rated current	100 A (acc. to VDE and UL); 87 A (acc. to CSA)
Degree of pollution	3
Overvoltage category	III
Power connector (related)	RLS1301

8.5 Flange Sockets RGS1000 / RGS1003

RGS1003

KM000016v01_nn.fh11

Pin Assignment Flange Socket RGS1000

Designation	S1, S3, M1, M3	S2, M2
1	VCC_Encoder	VCC_Encoder
2	GND_Encoder	GND_Encoder
3	A +	A +
4	A -	A -
5	B +	B +
6	В -	В -
7	EncData +	EncData +
8	EncData -	EncData -
9	n.c.	EncCLK +
10	n.c.	EncCLK -

Technical Data - Flange Socket RLS1200

Designation	Description
Degree of Protection	IP67 (connected)
Temperature range	-40 +125 °C
Ambient temperature in operation	40 °C
Contact type	Pin
Rated voltage	125 V
Rated current	0.5 A
Degree of pollution	3
Overvoltage category	III (according to DIN VDE 0110)
Power connector (related)	RGS1101

8.6 Connecting Cables

8.6.1 Ready-Made Connection Cables

Rexroth provides ready-made power and encoder cables. The following documentation is available to help select cables.

You will find more information in the documentation **"Rexroth Connection Cables IndraDrive and IndraDyn"; DOK-CONNEC-CABLE*INDRV-CAxx-EN-P"See Selection Lists MSK"**. All available power and encoder cables, as well as the combinations for IndraDyn S motors, are described here.

Basic installation recommendations for ready-made cables The reachable operating time of cables mainly depends on the mode of installation and environmental factors at the place of use. However, due to the variety of application conditions, the general recommendations for the handling of cables listed below must only be considered as an auxiliary guidance in order to ensure failure-free operation of the cables for as long as possible.

 Never apply tensile or torsional loads to the cable (torsion-resistant cables available on request)

The ends of the cable must be mechanically fastened after 30 cm (e.g. cable saddle, shielded connection of the controllers)

- Disconnect connectors always by traction on the connector, not on the cable.
- Do not bend the cables
- Do not fall below the bending radius of the cable
- Do not expose cables to high temperature differences and extreme climatic influences; do not store them outside, store them dry
- Always unwind cables, do not unreel over head
- Do not use damaged cables (damaged by pressure, clamping or squeezing, for example). In the case of damaged cables, bring installation to a standstill and replace cables.

Please note the detailed assembly and installation notes for ready-made cables in the documentation "DOK-CONNEC-CABLE*INDRV-CAxx-DE-P".

8.7 Connection Technique Fan Units

Fan units are designed with a connector with protection class IP 65. Connectors are delivered with the fan units, which must be connected on the customer-side. Please, observe the notes in chapter 7 "Fan Units for MSK Motors" on page 185.

8.8 Connection Technique Liquid Cooling

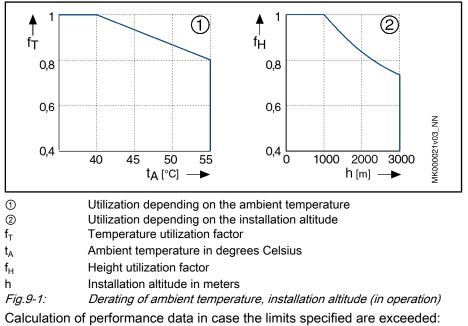
MSK motors with liquid cooling are connected via **G1/8**" connectors with the coolant supply system.

Installation material like tubes and fastening clamps do not belong to the scope of delivery. Choose a supply-tube with coorect inner diameter d_i . The following figure shows the connection variants possible.

Connection mode		Dra	wing	
Tube olive	Motor	Tube olive with R1/8" thread	Tube	Tube clip
Quick coupling	Motor	Coupling with R1/8" thread	Coupling with clamped screw connection	d Tube
Clamped connection	Motor	Clamped connection with R1/8" thread		

Fig.8-3:

Connection variants liquid cooling


9.1 Ambient Conditions

9.1.1 Setup Elevation and Ambient Temperature

According to DIN EN 60034-1, the motor performance data specified below are valid for:

- Ambient temperatures 0 ... 40 °C
- Setup elevation 0 ... 1,000 m above sea level

When exceeding the given limits, the performance data of the motors must be reduced.

Ambient temperature > 40 °C

 $M_0 red = M_0 \times f_T$

linstallation altitude > 1,000 m $M_0 _{red} = M_0 \times f_H$

Ambient temperature > 40 °C and setup elevation > 1,000 m M_0 _{red} = $M_0 \times f_T \times f_H$

9.1.2 Humidity / Temperature

Ambient climatic conditions are defined in different classes according to DIN EN 60721-3-3, Table 1. They are based on observations made over long periods of time throughout the world and take into account all influencing quantities that could have an effect, such as the air temperature and humidity.

Based on this table, Rexroth recommends class 3K4 for continuous use of the motors.

This class is excerpted in the following table.

Environmental factor	Unit	Class 3K4
Low air temperature	°C	0 ¹)
High air temperature	°C	+40
Low rel. air humidity	%	5
High rel. air humidity	%	95
Low absolute air humidity	g/m³	1
High absolute air humidity	g/m³	29
Speed of temperature change	°C/min	0.5
1) Differs from DIN EN 60721-3-2		

Rexroth permits 0 °C as the lowest air temperature.

Fig.9-2: Classification of ambient climatic conditions according to DIN EN 60721-3-3, Table 1

DINEN

1)

9.1.3 Vibration

Sinusoidal Vibrations

Sinusoidal vibrations occur in stationary use; depending on their intensity, they have different effects on the robustness of the motors.

The robustness of the overall system is determined by the weakest component. Based on DIN EN 60721-3-3 and DIN EN 60068-2-6, the following values result for Rexroth motors:

Direction	Maximum permissible vibration load (10-2,000 Hz)		
	Encoder S1, S3, M1, M3	Encoder S2, M2	
axial	10 m/s²	10 m/s²	
radial	30 m/s²	10 m/s²	
radial	30 m/s²	10 m/s²	

Fig.9-3: Permissible vibration load for MSK motors

Motors with mounted fan units are not suited for applications with continuous shock load, e.g. pressing, squeezing, chargers, ...

In such cases, use motors with higher performance without fan unit or liquid cooled motors.

9.1.4 Shock

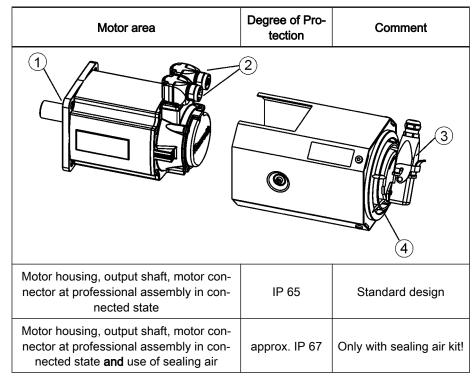
The shock load of the motors is indicated by providing the maximum permitted acceleration in non-stationary use, such as during transport.

Damage to functions is prevented by maintaining the limit values specified.

Based on DIN EN 60721-3-3 and DIN EN 60068-2-6, the following values result for Rexroth motors:

From o cino	Maximum permitted shock load (6 ms)		
Frame size	axial	radial	
MSK030			
MSK040	10 m/s²	1,000 m/s²	
MSK043 1)			
MSK050			
MSK060	10 m/s²	500 m/s²	
MSK061			
MSK070	10 m/s²	300 m/s²	
MSK071			
MSK075 1)			
MSK076			
MSK100	10 m/s²	200 m/s²	
MSK101			
MSK103 1)			
MSK131 ¹⁾			

1)Motor not availabe in ATEX designFig.9-4:Permitted shock load for MSK motors


9.2 Degree of Protection

The motors are subdivided into corresponding types of protection (IP) regarding their applicability for different ambient conditions. The protection of the device acc. to EN 60529 is characterized by a two-digit number. The **first digit** defines the degree of protection against contact and penetration of foreign particles. The **second digit** defines the degree of protection against water.

1st digit	Degree of protection	
6	Protection against penetration of dust (dust-proof); complete contact protection	
4 Protection against intrusion of solid foreign bodies, more th 1mm in diameter		
2 Protection against intrusion of solid foreign bodies, more than 12.5 mm in diameter		
2nd digit	Degree of protection	
7	Protection against harmful effects if temporarily immersed in wa- ter.	
5	Protection against a water jet from a nozzle directed against the housing from all directions (jet water)	
4	Protection against water splashing against the housing from all directions (splash water)	

Fig.9-5: IP types of protection

The construction of IndraDyn S motors is according to the following protection classes acc. to EN 60529.

	Motor area	Degree of Pro- tection	Comment
Fan motor and connector in connected state		IP 65	Accessory fan unit
Fan grid		IP 24	Accessory fan unit
1	Output shaft with shaft sealing ring		
2	Connector for power and encoder connection (optionally retrofitable fo sealing air)		
3	Fan motor with connector		
\bigcirc	E and annial		

④ Fan grid

Fig.9-6: IP-protection area with MSK motors

Ĩ

The inspections for the second digit are carried out with fresh water. If cleaning is effected using high pressure and/or solvents, coolants, or penetrating oils, it might be necessary to select a higher degree of protection.

9.3 Design and Installation Positions

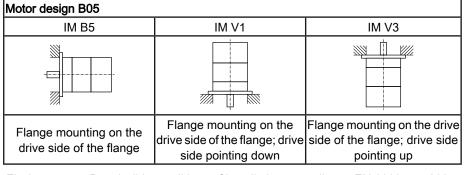


Fig.9-7: Permissible conditions of installation according to EN 60034-7:1993

Motor damage due to penetration of liquids!

If motors are attached according to IM V3, fluid present at the output shaft over a prolonged time may penetrate and cause damage to the motors.

Ensure that fluid cannot be present at the output shaft.

NOTICE

9.4 Compatibility with Foreign Materials

All Rexroth controls and drives are developed and tested according to the state of the art.

However, since it is impossible to follow the continuing further development of every material with which our controls and drives could come into contact (e.g. lubricants on tool machines), reactions with the materials that we use cannot be ruled out in every case.

For this reason, you must execute a compatibility test between new lubricants, cleansers, etc. and our housings and device materials before using these products.

9.5 Motor Varnish

Color Black (RAL9005)

Resistance Resistant against

- diluted acids/alkaline solutions
- water, sea-water, sewage
- current mineral oils

Limited resistance against

- organic solvents
- hydraulic oil
- No resistance against
- concentrated acids and alkaline solutions

Additional varnish

Permitted for:

standard products.

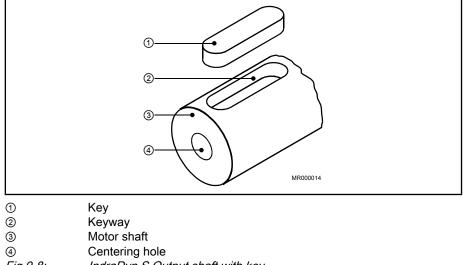
It is permitted to provide the housing with additional varnish (coat thickness no more than 40 μm). Check the adhesion and resistance of the new varnish before applying it.

NOT permitted for:

products for potentially explosive areas.

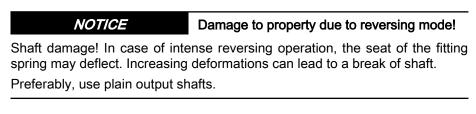
Overcoating the motors in ATEX design is not allowed in order to not to affect the surface properties (such as insulation resistance, electrostatic charge) adversely.

RF	Protect all safety notes, type plates and open connectors with a
	painting protection when painting additionally.


9.6 **Output Shaft**

Plain Shaft 9.6.1

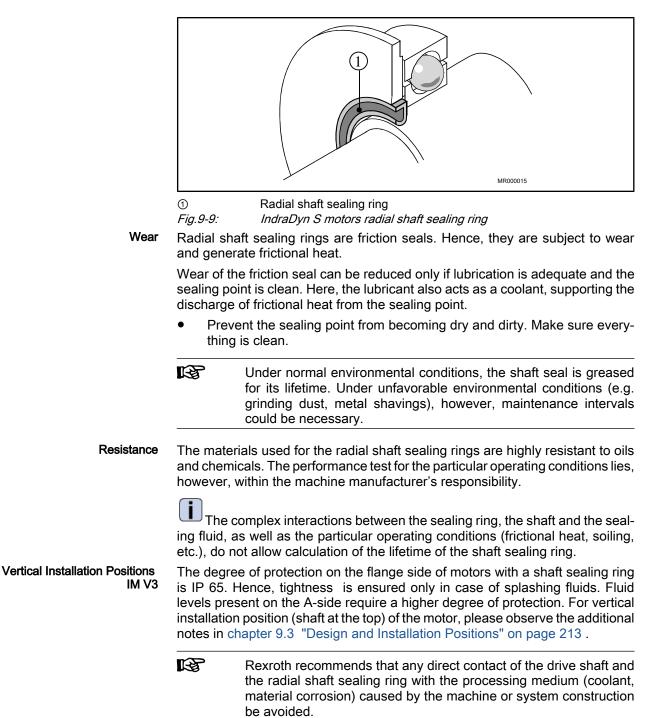
The standard design recommended for IndraDyn S motors provides a nonpositive shaft-hub connection without play and excellent running smoothness. Use clamping sets, clamping sleeves or clamping elements to couple the machine elements to be driven.


9.6.2 **Output Shaft with Keyway**

The optional key according to DIN 6885, sheet 1, version 08-1968, permits the form-fitting transmission of torgues with constant direction, with low requirements for the shaft-hub connection.

Fig.9-8: IndraDyn S Output shaft with key

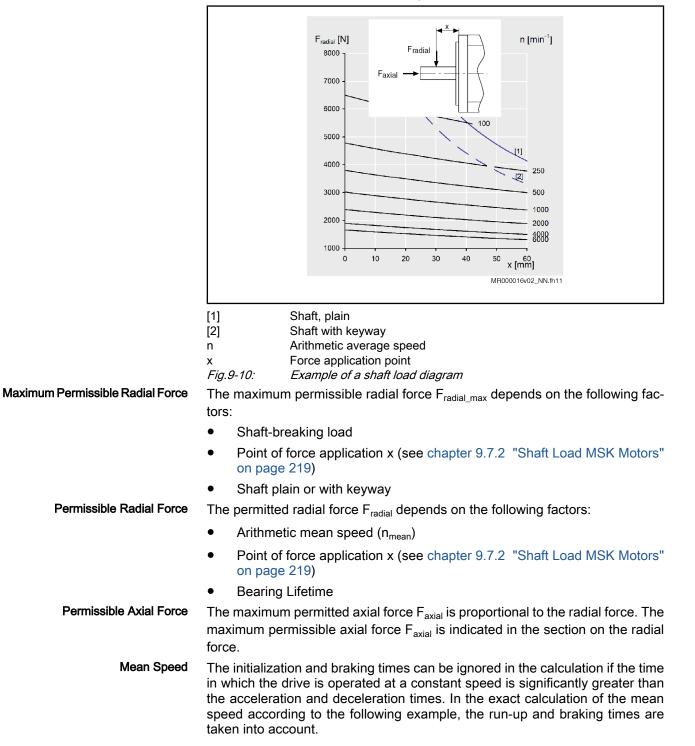
The machine elements to be driven must additionally be secured in the axial direction via the centering hole on the end face.

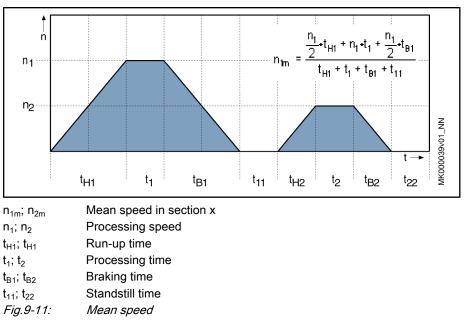


Balancing with a Complete Key IndraDyn S motors are balanced with the complete key. Hence, the machine element to be driven must be balanced without a key. Modifications to keys may be made only by the user himself and on his own

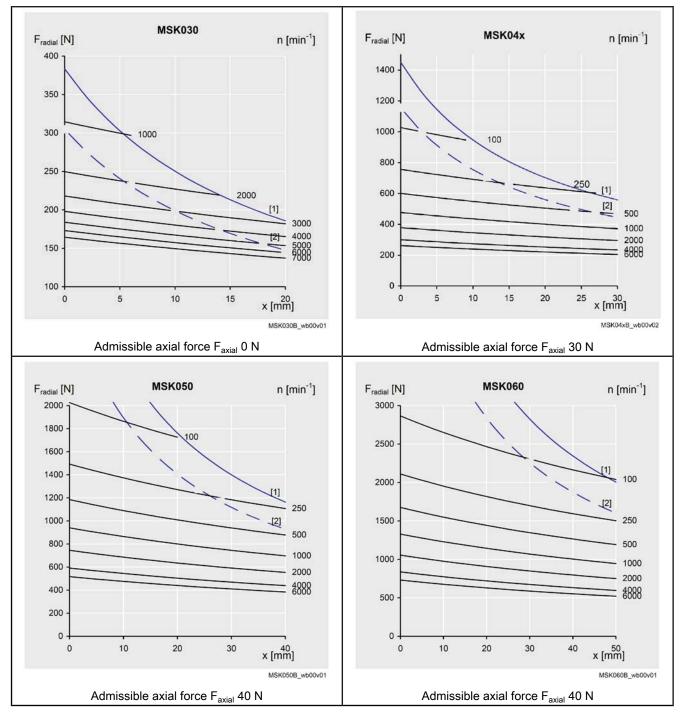
responsibility. Bosch Rexroth does not assume any warranty for modified keys or motor shafts.

Output Shaft with Shaft Sealing Ring 9.6.3

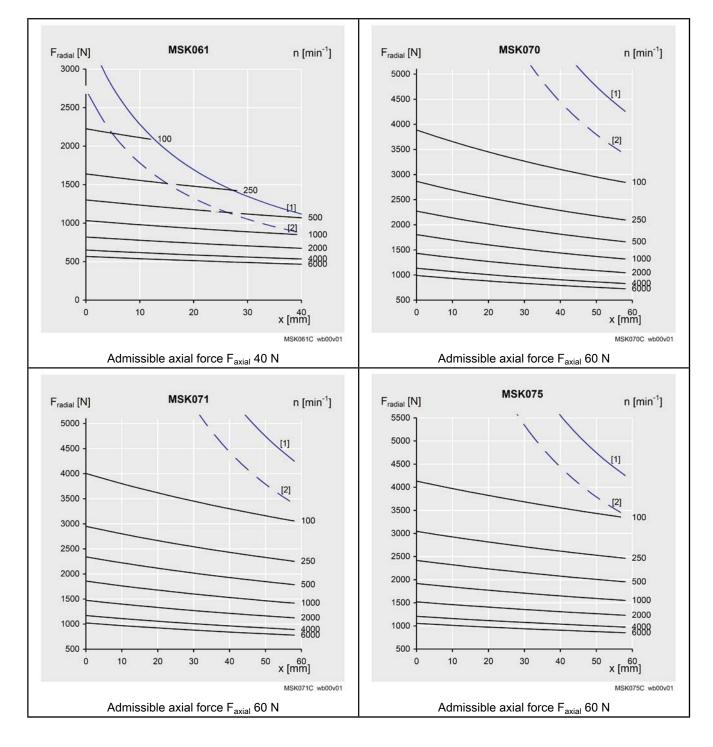

IndraDyn S motors are designed with according to DIN 3760 - design A.

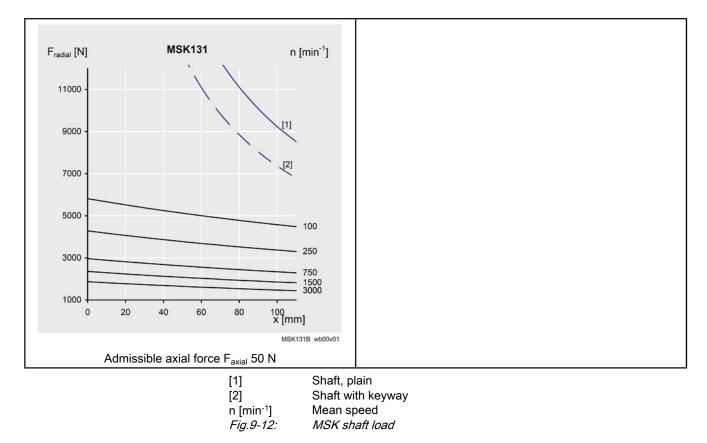


9.7 Bearing and Shaft Load


9.7.1 Radial Load, Axial Load

During operation, both radial and axial forces act upon the motor shaft and the motor bearings. The construction of the machine, the selected motor type and the attachment of driving elements on the shaft side must be adapted to each other to ensure that the load limits specified are not exceeded.




A complete processing cycle can consist of several sections with different speeds. In this case, the average is to be calculated from all the sections.

9.7.2 Shaft Load MSK Motors

MSK076 **MSK100** F_{radial} [N] n [min⁻¹] F_{radial} [N] n [min⁻¹] [2] [2] 6000 x [mm] x [mm] MSK076C wb00v01 MSK100A wb00v01 Admissible axial force $F_{\text{axial}} \ 60 \ N$ Admissible axial force $F_{\text{axial}} \ 80 \ \text{N}$ **MSK103** F_{radial} [N] n [min⁻¹] **MSK101** n [min⁻¹] F_{radial} [N] [1] [2] [2] 39988 **#888** 0. x [mm] x [mm] MSK103B_wb00v01 MSK101C wb00v01 Admissible axial force F_{axial} 80 N Admissible axial force $F_{\text{axial}} \ 80 \ \text{N}$

9.8 Bearing Lifetime

The bearing lifetime is an important criterion for the availability of IndraDyn motors.

If IndraDyn S-motors are operated within the limits specified for radial and axial loads, the bearing lifetime is as follows:

Bearing Lifetime $L_{10h} = 30,000$ operating hours

(calculated according to ISO 281, ed. 12/1990)

This applies to all IndraDyn motors based on the following:

- The permitted loads from the corresponding chapter "Technical Data" are never exceeded.
- The motor is operated under the permitted conditions for use and in the permitted ambient temperature range of 0 °C to +40 °C.

Differing loads can have the following effects:

- Premature failure of the bearing due to increased wear or mechanical damage.
- Reduction of the grease lifetime leads to premature failure of the bearing.
- Avoid exceeding the load limits.

In other cases, the bearing lifetime is reduced as follows:

 $\mathcal{L}_{10.h} = \left(\frac{F_{radial}}{F_{radial} - \frac{1}{5} st}\right)^{3} \cdot 30000$ L_{10h} Bearing lifetime (according to ISO 281, ed. 12/1990) F_{radial} Determined permissible radial force in N (Newtons) F_{radial_act} Actually acting radial force in N (Newtons) Fig.9-13: Calculation of the bearing service life L 10h, if the permissible radial force Fradial is exceeded Under no circumstances may the actually acting radial force F_{radial_act} be higher than the maximum permissible radial force F_{radial_act} al_max.

Mechanical Bearing Lifetime in case of Increased Radial Force

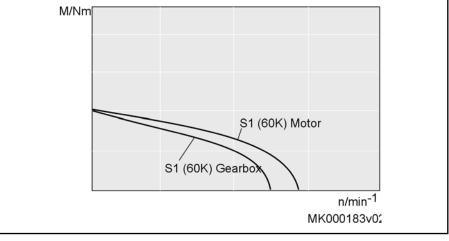
9.9 Attachment of Drive Elements

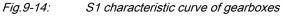
Motor damage by intrusion of liquid!

Pending liquids (e.g. cooling lubricants, gearbox oil, etc.) at the drive shaft are inadmissible.

When installing gearboxes please use gearboxes with closed (oil-proof) lubrication system only. Gearbox oil should not be in permanent contact with the shaft sealing ring of the motors.

Whenever attaching drive elements to the output shaft, such as


- Gearboxes
- Couplings
- Gear pinion


please be sure to observe the following notes.

Gearbox mounting on motors Are gearboxes mounted on motors, the thermal coupling of the motors on machines or constructions changes.

> Depending on the gearbox type, the heat development on the gearbox is different. The heat dissipation of the motor via the flange is reduced in every case when a gearbox is mounted. This must be heeded at the project planning.

> A reduction of the given performance data is necessary, to do not overload motors when using gearboxes.

The indicated torques in the characteristic curves of the motor have to be reduced by **20-30%** when mounting gearboxes.

Please, heed all further notes and specifications within this documentation for the used gearboxes.

Overdetermined Bearing Generally, overtermined bearings are to be avoided by all means when connecting drive elements. The tolerances inevitably present in such cases will lead to additional forces acting on the bearing of the motor shaft and, as the case may be, to a distinctly reduced service life of the bearing.

> If redundant attachment cannot be avoided, it is absolutely necessary to consult with Bosch Rexroth.

- **Couplings** The machine construction and the drive elements used must be carefully adapted to the motor type so as to make sure that the load limits of the shaft and the bearing are not exceeded.
 - When extremely stiff couplings are attached, the radial force which constantly changes the angular position may cause an impermissibly high load on the shaft and bearing.

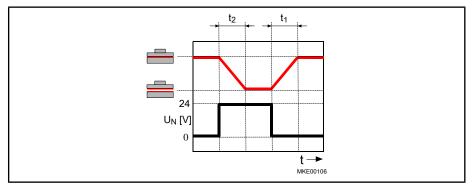
Ball bearing pinion or helical drive pinion

Owing to thermal effects, the flange-sided end of the output shaft may shift by 0.6 mm in relation to the motor housing. If helical drive pinions or bevel gear pinions directly attached to the output shaft are used, this change in position will lead to

- a shift in the position of the axis, if the driving pinions are not defined axially on the machine side,
- a thermally dependent component of the axial force, if the driving pinions are defined axially on the machine side. This causes the risk of exceeding the maximum permissible axial force or of the play within the gears increasing to an impermissible degree.
- Damage of the motor bearing on the B-side due to exceeding of the maximum permissible axial force.

In such cases, drive elements should preferably be used with their own bearings which are connected to the motor drive shaft via axially compensating couplings.

9.10 Holding Brakes


9.10.1 Holding brake electrically-releasing

The holding brake of the IndraDyn S motors works according to the principle "electrically-released". Non-operative closed holding brakes open when applying the operating voltage.

The voltage supply of the holding brake has to be designed so as to guarantee under the worst installation and operation conditions that a sufficient voltage is available at the motor in order to release the holding brake. (Please also refer to Rexroth IndraDrive Drive System DOK-INDRV*-SYSTEM****-PRxx-EN-P, Chapter "Project Planning of Control Voltage ")

The switching voltage arriving on the motor is influenced by the cable length and the cable features, e.g. the conductor resistance.

- We recommend a minimum voltage of 22.8 V (24 V 5%) onto the drive device for Bosch Rexroth ready-made power cables up to max. 50 m.
- We recommend a minimum voltage of 24.7 V (26 V 5%) onto the drive device for Bosch Rexroth ready-made power cables longer than 50 m.

- t₁ Connection time
- t₂ Disconnection time

Fig.9-15: Switching status of holding brake over time

The electrically-releasing holding brake is used to hold the axes at a standstill and when the "controller enable" signal is off. When the supply voltage fails and the controller is enabled, the electrically-releasing holding brake will close automatically.

Do not use the holding brake as an operational brake for moving axes.

If the holding brake is engaged repeatedly on a drive in motion or the rated brake torque is exceeded, premature brake wear can occur.

9.10.2 Holding Brakes - Notes Regarding Safety

Observe the safety requirements for the system planning and development.

Personal injury through hazardous movements caused by falling or descending axes!

Secure vertical axes against falling or descending after disconnection:

- lock the vertical axes mechanically,
- provide an external braking / collecting / clamping device, or
- Ensure sufficient weight compensation of the axes.

The serially delivered holding brakes which are driven by the control device are **not** suited for personal safety!

Personal protection must be realized by superordinate fail-safe measures, such as e.g. the locking off of the danger zone by means of a protective fence or grill.

Beside the specified details and notes about holding brakes, heed the additional standards and directives when planning the system. For Europian countries:

- EN 954 and ISO 13849-1 and ISO 13849-2 Safety-related components of controls
- Information sheet no. 005 "Gravity-loaded axes (vertical axes)" published by: Fachausschuss Maschinenbau, Fertigungssysteme, Stahlbau

For the USA:

 See National Electric Code (NEC), National Electrical Manufacturers Association (NEMA) as well as local building regulations.

The following is generally valid: Comply with all applicable national regulations!

The permanent magnetic brake is no safety brake. This means, a torque reduction by non-influenceable disturbance factors can occur (see EN 954 and ISO 13849-1 and ISO 13849-2 or the information leaflet No. 005 about "Gravityloaded axes (vertical axes)").

Please pay particular attention to the following:

- Corrosion on friction surfaces, as well as dust, perspiration and sediments reduce the braking effect.
- Grease must not hit the friction surface.
- Overvoltage and too high temperatures can durably weaken the permanent magnets and thus the brake.

Engaging of the holding brake is no longer ensured, if the air gap between armature and pole is improperly increased due to deterioration. In this case, no braking occurs.

9.10.3 Layout of Holding Brakes

Holding brakes on motors are basically not designed for service braking. The effective braking torques are physically conditionally different in static and dynamic operation.

Normal operation an STOP	d EMERGENCY	event of faults
brake for clamping of "statistic holding toro	f a standstill axes, the ue" (M4), applies as	For fault conditions to deactivate a moving axis ($n \ge 10 \text{ min}^{-1}$), a "dynamic braking moment" acts (M_{dyn}) - sliding friction.
axis (n < 10 min⁻¹), a	"dynamic braking	
M4 > M _{dyn}		
Therefore, note the following description of dynamic sizing.		
Fig.9-16: Dyna	mic Sizing	
Dynamic SizingThe load torque must be smaller than the minimum dynamic moment Mdyn which the holding brake can provide. Otherwise the dynamic holding brake torque is not sufficient to stop the axes.If a mass is to be decelerated in a defined time or in a defined route, the addi- tional mass moment of inertia of the whole system must be taken into account.		
	STOP In normal operation, brake for clamping of "statistic holding torq indicated in the data For EMERGENCY S axis (n < 10 min ⁻¹), a moment" acts (M _{dyn}) Therefor Fig.9-16: Dynation The load torque must the holding brake c not sufficient to stop If a mass is to be dutional mass moment To ensure construct	In normal operation, using the holding brake for clamping of a standstill axes, the "statistic holding torque" (M4), applies as indicated in the data sheets.For EMERGENCY STOP to deactivate an axis (n < 10 min ⁻¹), a "dynamic braking moment" acts (M_{dyn}) - sliding friction.M4 > Therefore, note the followingFig.9-16:Dynamic SizingThe load torque must be smaller than the the holding brake can provide. Otherwin not sufficient to stop the axes.If a mass is to be decelerated in a definitional mass moment of inertia of the whe To ensure construction safety, reduce the

9.10.4 Holding Brake–Commissioning and Maintenance Instructions

In order to ensure proper functioning of the holding brake, it must be checked before the motors are commissioned. The test as well as the resurfacing may be carried out "mechanically by hand" or "automatically by means of the software function".

Checking and Resurfacing of Hold-

Measure the holding torque (M4) of the holding brake. If necessary, resurface ing Brakes by Hand the holding brake.

Measuring the Holding Torque (M4) of the Holding Brake

- 1. De-energize the motor and secure it against re-energization.
- 2. Measure the transferable holding torque of the holding brake with a torque wrench. For holding torque (M4) refer to the technical data.

If the holding torque (M4) is achieved, the motor is ready for assembly. If the holding torque (M4) is not achieved, the subsequent resurfacingprocess can be used to reconstitute the holding torque.

Resurfacing the Holding Brake

- At closed holding brake, turn the output shaft by hand, e.g. with the help 1. of a torque wrench, by about 5 revolutions.
- 2. Measure the holding torque (M4).

If the holding torque (M4) is achieved, the motor is ready for assembly. If the specified holding torque (M4) is not attained after several grindingin processes, the holding brake is not operable. Please, contact the Rexroth Service.

Checking and Resurfacing of Holding Brakes by means of the Software Function

Checking the Holding Torque (M4) via P-0-0541, C2100 Command Holding system check

1. The efficiency of the holding brake and the opened state are checked by the control device by starting the routine "P-0-0541, C2100 Command Holding system check".

If the holding brake is operational, the drive is in an operational state after the routine was run through. If the braking torque is too low, the control device outputs a corresponding message.

The brake test can also be carried out cyclically in the framework of a preventive maintenance.

Restoring the Holding Torque (M4) by means of the Software Function

The following possibilities are available:

1. Realization of the resurfacing routine IndraDrive "Restoring the holding torque "(see"P-0-0544, C3900 Command Resurfacing of motor holding brake"). A repeated realization of the resurfacing routine is possible.

Upon the execution of the command C3900 it is not checked whether the resurfacing of the holding brake was successful. It is recommended to execute the command C2100 (Command Holding system check) once again.

2. Resurfacing routine by superior control. Here, special control programs adapted to the machine and system concepts are required. If necessary, please contact your Bosch Rexroth distribution partner and discuss the resurfacing routine parameters for your application.

For more detailed information about software functions refer to the functional description "Rexroth IndraDrive Firmware for Drive Control Devices MPxxx, DOK-INDRV*-MP*-xxVRS**-FKxx-EN-P."

9.11 Acceptances and Authorizations

9.11.1 CE Symbol

Declaration of Conformity

Certificate of conformity confirming the structure of and compliance with the valid EN standards and EC directives are available for all IndraDyn S motors. If necessary, these certificates of conformity can be requested from the responsible sales office.

The CE symbol is attached to the motor type label of IndraDyn S motors.

9.11.2 cURus-Symbol

Motors authorized by the UL authorization (Underwriters Laboratories Inc.®) are labeled with the following sign on the motor type plate, the authorization number of the motors (file number) is given in the technical data.

Fig.9-18:

cURus - symbol

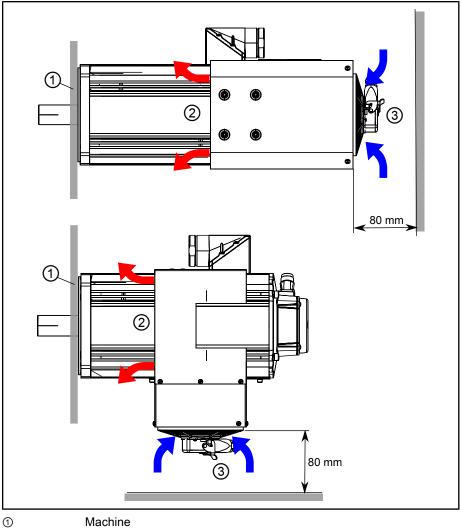
9.12 Motor Cooling System

9.12.1 Natural Convection

Rexroth motors of the standard design are self-cooling motors. The heat dissipation is realized over the natural convection to the ambient air and heat conduction onto the machine construction.

Pollution of the motors reduces the heat dissipation. Ensure tidiness!

9.12.2 Fan Units


Fan units are deliverable for certain motor types. The power data given in the technical data are labeled with the index "S" for surface You will find a description of the technical data of the available fan units in chapter 7 "Fan Units for MSK Motors" on page 185.

Cooling occurs using air flows that are guided through air plates over the surface of the motor. The fan is designed in such a way, that clean air from its environment is used to cool the motor.

Explicitely not suitable is using the fan under the following conditions:

- Intake air, which contains abrasive (erode) particles.
- Intake air, which is corrosive, e.g. salt mist.
- Intake air, which contains high dust loading, e.g. suction of saw dust.
- Intake of flammable gas/particles
- Using fan units as safety related part or for assumption of safety related funktions

In order to ensure that the required air amount of the fan unit can be routed by the fan, a minimum distance between the fan screen and the machine to suction/blow the air must be taken into account. The distance is determined by the motor construction.

2

Air flow-off space 3 Air suck-in space

Fig.9-19: Fan units installation space, minimum distance

Notice the minimum distance of air supply ③ for maschine construction.

Pollution can reduce the performance of the fans and lead to thermal overload of the motors. When the machine is operated in a polluted environment, increase the system availability by regularly cleaning the fan and motor radiator fins. The machine construction must allow easy access to the motor and the fans for maintenance work. You will find special notes about maintenance and troubleshooting on motor fans in chapter 13.4 "Maintenance" on page 261.

Liquid cooling 9.12.3

General Information

Rexroth motors in liquid-cooled design are suited for extreme loads, e.g. duration, start, stop-operation with high repetition rates. MSK motors with possible liquid coolant are marked in the type code under point 5 "Cooling type" with "FN".

Coolant Ducts	Abbrev.1222222222222Colspan="22Colspan="22222222A bbrev.2222222A bbrev.22222222222222222222222222222222222 <th col<="" th=""></th>	
	 Owing to the turning points inevitably present in pipeline systems (e.g. 90-degree elbows), high pressure losses develop in the cooling lines. For that reason, we recommend that tubing systems be used. When selecting the coolant lines, please be absolutely sure to take the pressure drop within the system into consideration. If greater lengths are used, the inside diameter of the lines should, therefore, at least be 9 mm and be reduced only shortly before being connected to the motor. 	
Operating Pressure		
	Fo all MSK motors, the maximum coolant inlet pressure is 6 bar . Limit the inlet pressure of 3 bar for motors up to manufacturing date of 2010-01-01 FD 10W01 .	
	Please note that additional screwed or branch connections in the cooling circuit can reduce the flow and supply pressure of the coolant.	
Pressure Drop	The flow in the coolant in the drive components is subject to changes in cross- section and direction. For that reason, there are friction and turning losses. These losses show as the pressure drop Δp .	
	The pressure drop Δp_n of the liquid-cooled motors is specified in the technical data. It relates to the specified flow volume of water as coolant. If the flow volume is converted to a different temperature increase, the pressure drop must be taken from the characteristic curve below.	

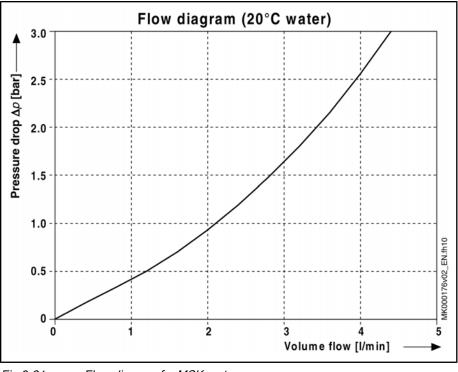


Fig.9-21: Flow diagram for MSK motors

If a different coolant is used, a different coolant-specific flow diagram is applicable.

Coolants

The data specified in the documentation relate to **water as coolant.** If other coolants are used, these data no longer apply and must be recalculated.

Only MSK motors with the option "FN" can be operated via an externally connected cooling system.

The motor power loss P_V is conducted via the coolant. Accordingly, MSK motors may only be operated if coolant supply is ensured. The cooling system must be rated by the machine manufacturer in such a way that all requirements regarding flow, pressure, cleanliness, temperature gradient etc. are maintained in every operating state.

Impairment or failure of motor, machine or cooling system!

 \Rightarrow Heed the manufacturer's instructions when constructing and operating cooling systems.

 \Rightarrow Do not use any lubricants or cutting materials from operating processes.

A cooling with floating water from the supply network is not recommended. Calcareous water can cause deposits or corrosion and damage the motor and the cooling system.

For corrosion protection and for chemical stabilization, the cooling water must have an additional additive which is suitable for mixed-installations.

Use of aggressive coolants, additives, or cooling lubricants can cause irreparable motor damages.

• Use systems with a closed circulation and a fine filter \leq 100 µm.

- Observe the environmental protection and waste disposal instructions at the place of installation when selecting the coolant.
- Aqueous SolutionAqueous solutions ensure reliable corrosion protection without significant
changes to the physical properties of the water. The recommended additives
contain no materials hazardous to water.Emulsion with Corrosion ProtectionCorrosion protection oils for coolant systems contain emulsifiers which ensure

on Corrosion protection oils for coolant systems contain emulsifiers which ensure a fine distribution of the oil in the water. The oily components of the emulsion protect the metal surfaces of the coolant duct against corrosion and cavitation. An oil content of 0.5 – 2 volume percent has proved to be of value.

If, in addition to its function of corrosion protection, the corrosion protection oil also assumes the function of lubricating the coolant pump, the oil content must approx. be 5 vol.%.

Observe the instructions of the pump manufacturer!

Bosch Rexroth can give no general statements or investigations regarding applicability of process-related coolants, additives, or operating conditions.
 The performance test for the used coolants and the design of the liquid coolant system are generally the responsibility of the machine manufacturer.

Coolant Additives

Recommended Manufacturers of Coolant Additives The proper chemical treatment of the closed water systems is precondition to prevent corrosion, to maintain thermal transmission, and to minimize the growth of bacteria in all parts of the system.

> Rexroth recommends using coolant additives of the company NALCO Deutschland GmbH.

> Depending on the size of the cooling system, the user may use different additives in form of "ready-to-use cooling water" and "water treatment kits".

> The packaging size and the ingredients of the water treatment kit are completely adapted to the corresponding system volume and the user may fill them into the coolant reservoir without observing further mixing ratios.

Ready-to-Use Cooling Water (Company NALCO)

System volume in liters	Order code	Additives NALCO
0.5 50	Nalco PCCL100.11R	PCCL100

Cooling Water NALCO PCCL100

Fig.9-22: Ready-to-Use Cooling Water (Company NALCO)

Nalco PCCL100 is a ready-to-use, preserved cooling water for the use in closed cooling water systems. It is supplied directly to the closed systems and contains all reagents in the proper treatment concentration.

Nalco PCCL100 contains a corrosion inhibitor protecting ferrous metal, copper, copper alloys and aluminum against corrosion. Nalco PCCL100 is free of nitrite and minimizes the micro-biological growth.

Water Treatment Kits (Company NALCO)

	System volume in liters	Order code	Additives NALCO		
	50 100	480-BR100-100.88			
	100 200	480-BR100-200.88	TRAC100		
	200 350	480-BR100-350.88	7330		
	350 500	480-BR100-500.88	73199		
	Fig.9-23: Water Treati	ment Kits (Company NALCO)			
Coolant Additive NALCO TRAC100	Nalco TRAC100 is a liquid corrosion and film inhibitor for the use in closed cooling systems. Optionally with TRASAR technology: It monitors, shows and dosages the product automatically to its target concentration and continuously protects the system. NALCO TRAC100 is a complete inhibitor protecting ferrous metal, copper alloys and aluminum against corrosion. NALCO TRAC100 is free of nitrite and minimizes the requirements for micro-biological control.				
Coolant Additive NALCO 7330	Nalco 7330 is a non-oxidizing broad band biocide and suitable for application in closed cooling circuit systems.				
Coolant Additive NALCO 73199	•	c corrosion inhibitor suppor tion layer for non-ferrous m	•		
	The above additives are part of the preventive water treatment program by Nalco. It comprises not only the chemicals but also test methods, service and equipment. All these are made available to the user of the products.				
	The water treatment program is a specification for the user and describes the minimum requirements. Consult Nalco on any additional equipment, tests and services to ensure optimum performance and system protection of the cooling systems.				
	For additional information and order placement, please contact:				
	NALCO Deutschland Gm	bH			
	Planckstr. 26				
	71691 Freiberg/Neckar, Germany				
	Fax +49(0)7141-703-239				
	www.nalco.com				
	investigations	t in a position to give gener regarding applicability of operating conditions.	-		
	The performance test for the used coolants and the design of the liquid coolant system are generally the responsibility of the machine manufacturer.				
Used Materials					
	When used with MSK mot materials:	tors, the coolant comes into	contact with the following		
	Materials with coolant conta	ct			
	Flange, end shield	Al Mg 5 F32			
	Profile O-ring	Al Mg Si 0,5 F2 Viton	22		
	•	rating the cooling system, t	he machine manufacture		

In dimensioning and operating the cooling system, the machine manufacturer has to exclude all chemical or electro-chemical interactions with subsequent corrosion or decomposition of motor parts.

Coolant Inlet Temperature

IndraDyn S motors (option "FN") are designed according to DIN EN 60034-1 for operating with +10...+40 °C coolant inlet temperature. This temperature range must be strictly observed. At higher coolant temperatures, the reduction of the available torque is increased. Because of high coolant temperature gradients, lower temperatures may lead to destruction of the motor.

Install systems in the cooling circuit for monitoring flow, pressure and temperature.

Setting the Inlet Temperature Observe the temperature range permitted and consider the existing ambient temperature when setting the coolant inlet temperature.

The lower limit of the recommended coolant inlet temperature can be limited in dependence on the existing ambient temperature. To avoid condensation, a value of max. 5 °C below the existing ambient temperature is permitted as the lowest temperature to be set.

		Example 1:	Example 2:
Permittee	d coolant inlet temperature range:	+10 +40 °C	+10 … +40 ℃
Ambient	temperature:	+20 °C	+30 °C
Coolant inlet temperature to be set:		+15 … +40 ℃	+25 … +40 ℃
RP 1	The coolant inlet temperature	must he set in a te	mnerature

9.13 Motor Temperature Monitoring

9.13.1 General Information

The motor temperature is monitored by two systems that are operated independently of each other

- Temperature sensor
- Temperature model

and ensures thus the best protection of motors against irreversible damage by thermal overload.

9.13.2 Temperature Sensor

The monitoring of the motor temperature is ensured via the temperature sensor of the KTY84 type, which is built into the stator. The motor temperature measured is controlled via the following threshold values:

- Motor warning temperature (140 °C)
- Motor switch-off temperature (150 °C)

The threshold values are filed within the encoder memory of the MSK motors.

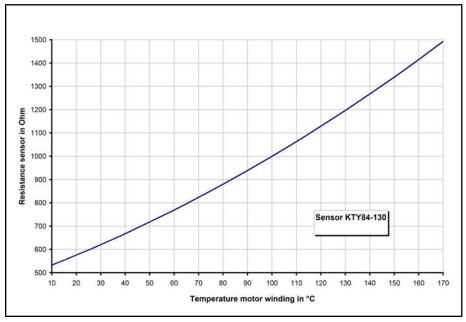


Fig.9-24: Characteristic curve KTY84-130

The IndraDrive control devices monitor the functionality of the temperature sensors.

For further information, please refer to the functional description of IndraDrive control devices.

9.14 Operation on External Controllers

Rate of rise of voltage

The isolation system of the motor underlies a higher dielectric load in converter operation than in a sinusoidal source voltage only. The voltage stress of the winding isolation in converter operation is mainly defined by the following factors:

- Crest value of voltage
- Rise time of impulse on the motor terminal
- Switching frequency of converter output
- Length of power cable to the motor

Main components are the switching times of converter output and the length of the power cable to the motor. The occured rates of rise of voltage on the motor may not exceed the specified limits from DIN VDE 0530-25 (VDE 0530-25): 2009-08 (picture 14, limit curve A) of impulse voltage, measured on the motor terminals of two strands in depencence of the rise time.

Outputs of IndraDrive converters keep this limits.

Transport and Storage

10 Transport and Storage

10.1 Notes about Transport

Transport our products only in original package. Additionally, heed specific ambient factors to protect the products from transport damage.

With regard to the DIN EN 60721-3-2, the following classifications and limit values are specified, which our products undergo during transport by road, water or sea. Please observe the described classifications in details to heed all factors, which are specified in their particular class.

Allowed classes of ambient conditions during transport acc. to DIN EN 60721-3-2

Classification mode	Allowed class
Classification of climatic ambient conditions	2K2
Classification of biological ambient conditions	2B1
Classification of chemically active materials	2C2
Classification of mechanically active materials	2S2
Classification of mechanical ambient conditions	2M1

Fig. 10-1: Allowed classes of ambient conditions during transport

The following significant ambient factors of the aforementioned classifications are named to receive a better overview. The specified values are the values of the particular class, if no others are given. Bosch Rexroth reserves the right, due to future experiences or changed ambient factors, to adjust these values at any time.

Permissible transport conditions

Environmental factor		Symbol	Unit	Value
Temperature		Τ _Τ	°C	-20 +80 ¹⁾
Air humidity (relative air humidity, not combin with quick temperature change)		φ	%	75 (at +30 °C)
Occurence of salt mist				Not permitted ¹⁾
1)Differs from DIN EN 60721-3-2Fig. 10-2:Permissible transport conditions				
Before transport,	empt	y the liqu	id coola	ant from the liquid-cooled

motors to avoid frost damage.

Transport and Storage

10.2 Notes about Storage

10.2.1 Storage Conditions

Generally, Bosch Rexroth recommends to store all components, up to their real installation into the machine, as follows:

- in their original package
- dry and dustfree
- at room temperature
- vibration free
- protected against light or direct insolation

Factory attached protective sleeves and covers can be mounted onto our motors. They must stay on the motor for transport and storage. Remove these parts just before assembly.

With regard to the DIN EN 60721-3-1, the following classifications and limit values are specified, which our products undergo during storage. Please observe the described classifications in details to heed all factors, which are specified in their particular classification.

Allowed classes of ambient conditions during storage acc. to DIN EN 60721-3-1

Classification mode	Class
Classification of climatic ambient conditions	1K2
Classification of biological ambient conditions	1B1
Classification of chemically active materials	1C2
Classification of mechanically active materials	1S1
Classification of mechanical ambient conditions	1M2

Fig. 10-3: Allowed classes of ambient conditions during storage

The following significant ambient factors of the aforementioned classifications are named to receive a better overview. The specified values are the values of the particular class, if no others are given. Bosch Rexroth reserves the right, due to future experiences or changed ambient factors, to adjust these values at any time.

Allowed classes of ambient conditions during storage acc. to DIN EN 60721-3-1

Environmental factor	Symbol	Unit	Value
Air temperature	Τ _L	°C	-20 +60 ¹⁾
Relative air humidity	φ	%	5 95
Absolute air humidity	ρw	g/m³	1 29
Condensation			not permissible
Icing			not permissible
Direct insolation			Not permitted ¹⁾
Occurence of salt mist			Not permitted ¹⁾

Differs from DIN EN 60721-3-1

Fig.10-4:

1)

Permitted storage conditions

Transport and Storage

R

Before re-storage, empty the liquid coolant from the liquid-cooled motors to avoid frost damage.

10.2.2 Storage Periods

Independend from storage duration, which can exceed the guarantee period of our products, the function remains under observance and realization of additional measures for start-up. Thereof, an additional warranty claim cannot be derived.

Motors

Storage period	Measures for start-up		
< 1 year	Resurfacing the Holding Brake		
	1. Check the electric contact whether they are free of corro- sion		
1 5 years	2. Run in the motor without load for one hour at 800 1,000 rpm		
	3. Resurfacing the Holding Brake		
	1. Change the bearing		
> 5 years	2. Change the encoder		
	3. Resurfacing the Holding Brake		
	4. Check the electric contact whether they are free of corro- sion		

Fig. 10-5: Measures before start-up of long-term storage motors

Cables and Connectors

Storage period	Measures before start-up
< 1 year	none
1 5 years	\Rightarrow Check the electric contact whether they are free of corrosion
> 5 years	\Rightarrow Should the cable or the cable jacket have porous parts, change them, otherwise check the electric contacts if they are free of corrosion.

Fig. 10-6: Measure before start-up of long-term storaged cables and connectors

11.1 State of Delivery

11.1.1 General Information

On delivery, the IndraDyn S motors are packed in cardboard boxes or wooden crates. Packing units on pallets are secured by means of retaining straps.

Injuries due to uncontrolled movement of the retaining straps when cutting!

Maintain a sufficient distance and carefully cut the bandages.

Upon delivery from the factory, the motor drive shaft and the connectors have protective sleeves. Remove the protective sleeves just before assembly.

11.1.2 Inspection at the Factory

All IndraDyn S motors undergo the following tests, among others, at the factory:

Concentricity and position tolerances of shaft end and fastening flange

- Electrical Test

 High voltage test
 - Isolation resistance test
 - Protective conductor connection
 - Test of winding resistance

Mechanical Test

- Axial eccentricity of the flange face to the shaft
- Coaxiality of the centering shoulder to the shaft
- Test of brake holding torque (option)

11.1.3 Test Realized by the Customer

Since all IndraDyn S motors undergo a standardized inspection procedure, high-voltage tests on the customer side are not required. Motors and components could be damaged if they undergo several high-voltage inspections.

Ν	ОТ	

Destruction of motor components due to improperly executed high-voltage inspection! Invalidation of warranty!

Avoid repeated inspections.

Please observe the target values of the EN 60034-1.

11.2 Identification

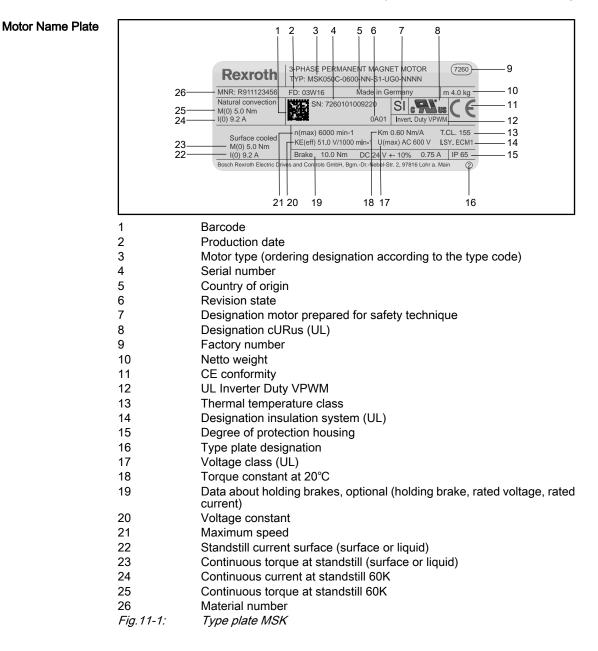
11.2.1 Scope of delivery

The total scope of a delivery can be seen in the delivery note or waybill. However, the contents of a delivery can be distributed over several packages. Each individual package can be identified using the shipment label attached. Please, check after receiving the delivery, if the delivered goods comply with your order and the shipping documents.

Complain any deviation at your responsible Rexroth sales partner, immediately.

Complain any visible transport damage directly at the deliverer.

11.2.2 Type Plate


Each motor has an individual type plate showing the device designation and providing technical information. Additionally, a second type plate is delivered with the motor.

If the original type plate of the motor is obscured by the machine construction, use the second type plate to an easily visible portion of the machine. This type plate is either enclosed to the motor or is removably glued onto the original type plate.

The type plate is provided for

- Identification of the motor
- Procurement of spare parts in case of a fault
- Service information.

The type designation of the motor is also filed in the encoder data memory.

11.3 Handling

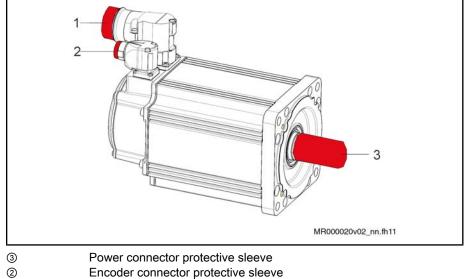
Injuries due to improper handling during transport of motors!

Do only use suitable lifting devices (e.g. lifting sling belts, eyebolts, chain suspension ...).

Use protective equipment and personal protective clothing (gloves, safety shoes, ...).

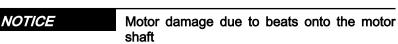
Never walk under hanging loads.

Damage of property and invalidation of the warranty due to incorrect storage!


Store the motors horizontally in their original packaging in a dust-free, dry, vibration-free and sun-protected environment.

Also observe the notes regarding storage and transport on the packaging.

Handling


On delivery, the IndraDyn S motors have protective caps and covers on the output shaft and on the flange sockets. During transport and storage, the protective sleeves must remain on the motor.

- Remove the protective sleeves just before assembly.
- Also use the protective sleeves if you return the goods.
- Avoid any damage to the motor flange and drive shaft.

Shaft protective sleeve

Fig. 11-2: IndraDyn S protective sleeves

Do never beat onto the shaft end and do not exceed the allowed axial and radial forces of the motor.

Transport Please, observe the following points during transport:

- Use suitable means of transport and consider the weight of the components (you can find the weight information on the data sheets or on the type plate of the motor).
- Provide appropriate shock absorbers, if strong vibrations may occur during transport.
- Transport the motors only in the horizontal position.
- Use cranes with lifting sling belts to lift the motors.

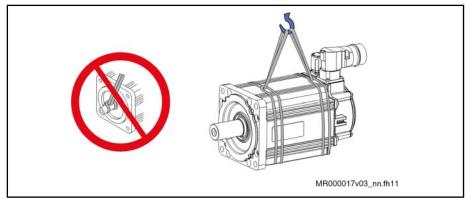


Fig. 11-3: Lifting and transporting motors by means of lifting sling belts

12 Installation

12.1 Safety

Death by electrocution possible due to live parts with more than 50V!

Open connectors of the motor only when the system has been de-energized. Heed the safety instructions according to DIN EN 50110-1:

- 1. Disconnect.
- 2. Protect the system or plant against restart.
- 3. Determine de-energization.
- 4. Ground and short-out.
- 5. Cover or shield any adjacent live parts.

Before starting to work, check with an appropriate measuring device (e.g. an multimeter) whether parts of the system are still under residual voltage (e.g. caused by capacitors, etc.). Wait for their discharging time.

Injuries due to improper handling during transport of motors!

Do only use suitable lifting devices (e.g. lifting sling belts, eyebolts, chain suspension ...).

Use protective equipment and personal protective clothing (gloves, safety shoes, ...).

Never walk under hanging loads.

Carry out all working steps very carefully. In this way, you minimize the risk of accidents and damage.

12.2 Skilled Personnel

Any works on the system and on the drives or in their vicinity must only be carried out by appropriately trained technical personnel.

Please make sure that all persons carrying out

- installation works
- maintenance, or
- operating activities

on the system are adequately familiar with the contents of this documentation as well as with all warnings and precautionary measures contained therein.

Qualified technical personnel are those persons who have been trained, instructed or are authorized to activate and deactivate, ground and mark electric circuits and equipment according to the technical safety regulations. Qualified technical personnel must possess appropriate safety equipment and have been trained in first aid.

12.3 Mechanical Attachment

12.3.1 Flange Assembly

In order to attach the motors correctly and safely to the machine, Bosch Rexroth recommends the following screws and washers for motor mounting.

The screwed connections must be able to take up both the force due to the weight of the motor and the forces acting during operation.

Usually, use cylinder head screws DIN 912 M... x ...- 8.8 and related washers according to DIN EN 28738. In case of several motors, the integration of washers is not required, see table.

IndraDyn S motors are designed for flange assembly (B05). Details on the mounting holes are given in the corresponding dimension sheet. For the fastening, the following general assignment applies:

Recommended screws for flange fastening of the MSK motors

2	B05 (flange assembly)				
0,0	Hole	Screw (8.8)		Wash- er DIN EN 2 8738	
A CONTRACTOR	Ø [mm]	Type ¹⁾	M _{GA} [Nm]	Ø [mm]	
MSK030	4.5	M4×20	3.1	none	
MSK040	6.6	6.6 M6×20	10.4	none	
MSK043 2)	0.0				
MSK050					
MSK060	9.0	M8×20	25	10	
MSK061					
MSK070					
MSK071	44.0	M10×20	E 1	10	
MSK075 2)	11.0	M10×30	51	12	
MSK076					

If the screws and washers used do not comply with this recommendation, the property class of the screws and the hardness class must be equivalent in order to transmit the required tightening torques (see fig. 12-1 "MSK mounting accessories (flange assembly)" on page 253).

	B05 (flange assembly)				
	Hole	Screw (8.8)		Wash- er DIN EN 2 8738	
A CONTRACTOR	Ø [mm]	Type ¹⁾	M _{GA} [Nm]	Ø [mm]	
MSK100					
MSK101	14.0	M12×40	87	14	
MSK103 2)					
MSK131 ²⁾	18.0	M16×35	215	none	

① Mounting hole

M_{GA} Tightening torque in Newton meters

1) Minimum screw length for screwing into steel.

2) Motor not available in ATEX version.

Fig.12-1: MSK mounting accessories (flange assembly)

12.3.2 Preparation

Prepare motor assembly as follows:

- 1. Procure tools, supplies, measuring and test equipment.
- 2. Check all components for visible damage. Defective components must not be mounted.
- 3. Ensure that dimensions and tolerances on the system side are suitable for motor attachment (for details, see the dimension sheet).
- 4. Check that all components, mounting surfaces and threads are clean.
- 5. Make sure that the assembly can be carried out in a dry and dust-free environment.
- 6. Make sure that the holder for the motor flange is deburred.
- 7. Remove the protective sleeve of the motor drive shaft and keep it for further use.
- 8. Only for motors with holding brake:

Check whether the motor holding brake reaches the holding torque specified in the data sheet. Should the brake fail to reach the torque specified, first resurface the holding brake as described in chapter 9.10.4.

12.3.3 Motor Assembly

Mount the motor and observe the following:

- 1. Avoid pinching or jamming the centering collar on the motor side.
- 2. Avoid damage to the insertion fitting on the system side.
- 3. Connect the motor with the machine and observe the tightening torques.
- 4. Check the fit and accuracy of the connection before you proceed.

After having mounted the motor mechanically as prescribed, establish the electrical connections.

12.4 Electrical Connection – Connecting the Motor

12.4.1 General Information

It is recommended that you use ready-made Rexroth connection cables. These cables provide a number of advantages, such as UL/CSA authorization, extreme load capability and resistance as well as a design suitable for EMC.

Danger of life due to electrical power! Handling within the area of live parts is extremely dangerous.

- Any work required on the electric system must only be carried by skilled electricians. It is absolutely necessary to use power tools.
- Before working
 - 1. Disconnect.
 - 2. Protect the system or plant against restart.
 - 3. Determine de-energization.
 - 4. Ground and short-out.
 - 5. Cover or shield any adjacent live parts.
- Before starting to work, check with an appropriate measuring device whether parts of the system are still under residual voltage (e.g. caused by capacitors, etc.). If yes, wait until these parts have discharged.

Damage to persons or property by disconnecting or connecting energized connectors!

- Connect and disconnect connectors only when they are dry and de-energized.
- During operation of the system, all connectors must be securely tightened.

Risk of short-circuit caused by liquid coolant, lubricant or pollution! Short-circuits of live lines may cause unpredictable dangerous situations or lead to damage to property.

When installing or replacing drive components, provide open sides of power connectors with protective caps.

Do only open terminal boxes for connection purpose and close them immediately after the connection is done.

12.4.2 Attaching the Connectors

Power/Encoder Connectors

When fitting the encoder connector with a screwed end fitting, proceed as follows:

- 1. Place the power connector in the correct position onto the thread of the connection housing.
- 2. Tighten the union nut of the power connector manually. By leading the cable in further, the power connector can be steadily brought to its final position.
- 3. Completely tighten the union nut.

ß

Only completely tightened union nuts guarantee the indicated IP65 protection against water and activate the vibration protection.

12.4.3 Adjusting the Output Direction

The output direction of the connected power and encoder cables is adjustable for many MSK motors. This can be done via rotary flange sockets. The adjustable flange sockets can be turned through 240°. Please refer to the following table, for which flange socket, the output direction can be adjusted.

Flange socket	adjustable	not adjustable	Comment
RGS1000	•		-
RGS1003		•	-
RLS1000	•		-
RLS1200	•		-
RLS1300		•	The output direction can be se- lected when ordering

The motor flange socket can be turned if an appropriate connector has been attached. Owing to the leverage of the attached connector, the flange socket can be turned manually to the desired position.

- 1. Connect the motor power cable to the flange socket.
- 2. Move the flange socket to the desired output direction by turning the plugged-in connector.
- Do not use any tools (e.g. pliers or screwdrivers) to turn the motor flange socket. Mechanical damage to the flange socket when using tools cannot be excluded.

The desired output direction is set.

Whenever the flange socket is turned, the holding torque in the set position is reduced. To ensure the required holding torque of the flange socket, the output direction should be changed no more than 5 times!

13 Commissioning, Operation and Maintenance

13.1 Commissioning

Damage to property due to errors in the controls of motors and moving elements! Unclear operating states and product data!

Do not perform a commissioning, if ...

- the connections, operating states or product data are unclear or faulty.
- the safety equipment and monitoring of the system is damaged or not in operation.

Never use any damaged products.

Contact Rexroth for missing information or support during commissioning.

The following notes on commissioning refer to IndraDyn S motors as part of a drive system with drive and control devices.

Preparation

- 1. Keep the documentation of all products you are using ready.
- 2. Check the products for damage.
- 3. Check all mechanical and electrical connections.
- 4. Activate the safety and monitoring equipment of the system.
- Make sure that the optional holding brakes are ready for operation (cf. chapter 9.10.4 Holding Brake–Commissioning and Maintenance Instructions).

Bulk head connector

When all requirements are met, proceed as follows:

- 1. Activate the optional motor cooling fan unit or liquid cooling.
- 2. Carry out the commissioning of the drive system according to the instructions provided in the respective documentation. You can find the respective information in the functional description of the drive control devices.

Commissioning of drive controllers and the control unit may require additional steps. The inspection of the functioning and performance of the systems is not part of the commissioning of the motor; instead, it is carried out within the framework of the commissioning of the machine as a whole. Observe the instructions and regulations given by the machine manufacturer.

13.2 Operation

Keep the described ambient conditions during operation (cf. chapter 9 "Operating Conditions and Application Notes" on page 209).

13.3 Deactivation

In the case of malfunctions or maintenance, or to deactivate the motors, proceed as follows:

- 1. Observe the instructions of the machine documentation.
- 2. Use the machine-side control commands to bring the drive to a controlled standstill.
- 3. Switch off the power and control voltage of the drive controller.
- 4. **Only for motors with blowers:** Switch off the motor protection switch for the motor blower.
- 5. Switch off the main switch of the machine.
- 6. Secure the machine against accidental movements and against unauthorized operation.
- 7. Wait for the discharge time of the electrical systems to expire and then disconnect all electrical connections.
- 8. Before dismounting the motor and if applicable the fan unit, secure them against dropping or movement before detaching the mechanical connections.

13.4 Maintenance

13.4.1 General Information

Synchronous motors of the IndraDyn S series operate maintenance-free within the given operating conditions. However, operation under unfavorable conditions can lead to limitations in availability.

Increase availability with regular preventive maintenance measures. Observe the information in the maintenance schedule of the machine manufacturer and the service measures described below.

Danger of life due to electrical power! Handling within the area of live parts is extremely dangerous.

- Any work required on the electric system must only be carried by skilled electricians. It is absolutely necessary to use power tools.
- Before working
 - 1. Disconnect.
 - 2. Protect the system or plant against restart.
 - 3. Determine de-energization.
 - 4. Ground and short-out.
 - 5. Cover or shield any adjacent live parts.
- Before starting to work, check with an appropriate measuring device whether parts of the system are still under residual voltage (e.g. caused by capacitors, etc.). If yes, wait until these parts have discharged.

Combustions via hot surface with temperatures over 100 $^{\circ}\mathrm{C}$

Let the motor cool down, before maintenance. The thermal time constant stated in the technical data is a measure for the cooling time. A cooling time up to 140 minutes can be necessary!

Use safety gloves.

Do not work on hot surfaces.

Damage to persons and property at maintenance during operation!

Do not carry out any maintenance measures, while the machine is running.

During maintenance work, secure the system against restarting and unauthorized use.

13.4.2 Cleaning

Excessive dirt, dust or chips may adversely affect the functionality of the motors and, in extreme cases, even cause a failure of the motors. Clean the cooling fins of the motors at regular intervals (after one year at the latest) to reach a sufficiently high heat emission surface. If the cooling ribs are partially covered with dirt, sufficient heat dissipation via the ambient air is no longer guaranteed.

An insufficient heat radiation may have undesired consequences. The bearing lifetime is reduced by operation at impermissibly high temperatures (the bearing

grease is decomposing). Switch-off caused by overtemperature despite operation on the basis of selected data, because the appropriate cooling is missing.

13.4.3 Bearings

The nominal lifetime of the bearings is L10h = 30,000 h according to DIN ISO 281, ed. 1990, provided the permissible radial and axial forces are not exceeded.

The motor bearings should be replaced if

- the nominal bearing service life has been reached,
- running noises occur.

We recommend that bearings be replaced by the Bosch Rexroth Service.

13.4.4 Connecting Cables

Death by electrocution possible due to live parts!

If the slightest defect is detected in the cable sheath, the system must be shut down immediately. Then the cable must be replaced.

Do not repair any connection lines provisionally.

- Check connection cables for damage at regular intervals and replace them, if necessary.
- Check any optional energy management chains (drag chains) for defects.
- Check the protective conductor connection for proper state and tight seat at regular intervals and replace it, if necessary.

13.5 Notice at Malfunctions

A WARNING Electrocution by live parts of more than 50 V!

Before working on live parts: De-energize the machine and secure the mains switch again unintendet or unauthorized re-energization.

Check if the voltage is dropped down under 50 V before touching live parts!

A WARNING Combustions via hot surface with temperatures over 100 °C

Let the motor cool down, before maintenance. The thermal time constant stated in the technical data is a measure for the cooling time. A cooling time up to 140 minutes can be necessary!

Do not work on hot surfaces.

Use safety gloves.

In principle, heed the notice about malfunctions in the project planning manual and the commissioning manual. Contact the manufacturer if necessary chapter 16 "Service and Support" on page 271.

Malfunction	Failure cause	Measures
	Release of the controller is missing	Activate the release of the controller
The motor does not run	Failure of the controller	Troubleshooting according to the documentation of the controller.
	Supply voltage is missing	Control the supply voltage
	Brake is not ventilated	Control the drive of the brake
	The coupling element or the attach- ments are badly balanced	Re-balancing
Vibrations	Adjustment of shaft end attachments (like coupling, gearbox) is insufficient	Re-align the attachments.
	The fastening screws are loose.	Lock the screw connections as specified
Durania a sina	Foreign bodies within the motor	Set the motor on standstill -> repair by manufacturer
Running noise	Bearing is damaged	Set the motor on standstill -> repair by manufacturer
	Operation outside of the characteristics	Reduce the weight
		Clean the motor
High motor temperature The motor temperature approaches	The heat flow is impeded	Clean the fan grill of the fan unit and check the function of the fan
		Control the coolant circuit at liquid cool- ing.
Wrong or incorrect temperature dia	Temperature sensor not connected	Connect the temperature sensor.
Wrong or incorrect temperature dis- played	Temperature sensor is damaged	Set the motor on standstill -> repair by manufacturer

Fig. 13-1: Malfunctions at MSK motors

13.6 Dismantling

Damage to persons and property at installation work!

- Do not work on unsecured and operating machines.
- Before working, secure the machine against accidental movements and against unauthorized operation.
- Before dismantling, secure the motor and power supply against falling or movements before disconnecting the mechanical connections.

Combustions via hot surface with temperatures over 100 °C

Let the motor cool down, before maintenance. The thermal time constant stated in the technical data is a measure for the cooling time. A cooling time up to 140 minutes can be necessary!

Use safety gloves.

Do not work on hot surfaces.

- Observe the instructions of the machine documentation.
- Please observe the safety notes.
- Dismantle the motor from the machine. Store the motor properly!

14 Environmental Protection and Disposal

14.1 Environmental Protection

Production Processes	cesses which allow re-using and recy	- and resource-optimized production pro- voling the resulting waste. We regularly try prials and supplies by more environment-	
No Release of Hazardous Substan- ces	Our products do not contain any hazardous substances which may be released in the case of appropriate use. Normally, our products will not have any negative influences on the environment.		
Significant Components	Basically, our products contain the following components:		
	Electronic devices • steel • aluminum • copper • synthetic materials • electronic components and modules	Motors • steel • aluminum • copper • brass • magnetic materials • electronic components and modules	

14.2 Disposal

Return of Products	Our products can be returned to our premises free of charge for disposal. It is a precondition, however, that the products are free of oil, grease or other dirt.
	Furthermore, the products returned for disposal must not contain any undue foreign material or foreign components.
	Send the products "free domicile" to the following address:
	Bosch Rexroth AG Electric Drives and Controls Buergermeister-DrNebel-Strasse 2 97816 Lohr am Main, Germany
Packaging	The packaging materials consist of cardboard, wood and polystyrene. These materials can be recycled anywhere without any problem.
	For ecological reasons, please refrain from returning the empty packages to us.
Batteries and Accumulators	Batteries and accumulators can be labeled with this symbol.
	The symbol indicating "separate collection" for all batteries and accu- mulators is the crossed-out wheeled bin.
	The end user within the EU is legally obligated to return used batteries. Outside the validity of the EU Directive 2006/66/EC keep the stipulated directives.
	Used batteries can contain hazardous substances, which can harm the environment or the people's health when they are improper stored or disposed of.
	After use, the batteries or accumulators contained in Rexroth products have to be properly disposed of according to the country-specific collection.
Recycling	Most of the products can be recycled due to their high content of metal. In order to recycle the metal in the best possible way, the products must be disassembled into individual modules.

Environmental Protection and Disposal

Metals contained in electric and electronic modules can also be recycled by means of special separation processes.

Products made of plastics can contain flame retardants. These plastic parts are labeled according to EN ISO 1043. They have to be recycled separately or disposed of according to the valid legal requirements.

267/277

15 Appendix

15.1 List of standards

Document number	Title	Edition
	Directive 2006/42/EG of the European Parliament and of the Council of 17 May 2006 on machinery, and amending Directive 95/16/EC (recast)	17.05.2006
06/108/EG * 06/108/CE * 06/108/EC	Directive 2004/108/EC of the European Parliament and of the Council of 15 December 2004 on the approximation of the laws of the Member States relating to electromagnetic compatibility and repealing Directive 89/336/ EEC	
06/95/EG * 06/95/CE * 06/95/EC	Directive 2006/95/EC of the European Parliament and of the Council of 12 December 2006 on the harmonisation of the laws of Member States relating to electrical equipment designed for use within certain voltage limits	
DIN 332-2	Center holes 60° with thread for shaft ends for rotating electrical machines	1983-05
DIN 748-1	Cylindrical Shaft Ends; Dimensions, Nominal Transmissible Torques	1970-01
DIN 6885-1	Drive Type Fastenings without Taper Action; Parallel Keys, Keyways, Deep Pattern	1968-08
DIN 42955	Tolerances of shaft extension run-out and of mounting flanges for rotating electrical machinery, test	1981-12
genda 1 * VDE 0530-1	Rotating electrical machines - Part 1: Rating and performance (IEC 60034-1:2004); German version EN 60034-1:2004, Corrigenda to DIN EN 60034-1 (VDE 0530-1):2005-04	
DIN EN 60034-7; VDE 0530-7	Rotating electrical machines - Part 7: Classification of types of constructions and mounting arrangements (IM code) (IEC 60034-7:1992); German ver- sion EN 60034-7:1993	
genda 1 * VDE 0530-9 Corrigenda 1	Rotating electrical machines - Part 9: Noise limits (IEC 60034-9:2003, modi- fied + A1:2007); German version EN 60034-9:2005 + A1:2007, Corrigenda to DIN EN 60034-9 (VDE 0530-9):2008-01	2008-04
DIN EN 60034-11; VDE 0530-11	Rotating electrical machines - Part 11: Thermal protection (IEC 60034-11:2004); German version EN 60034-11:2004	2005-04
DIN EN 60034-14; VDE 0530-14	Rotating electrical machines - Part 14: Mechanical vibration of certain ma- chines with shaft heights 56 mm and higher - Measurement, evaluation and limits of vibration severity (IEC 60034-14:2003 + A1:2007); German version EN 60034-14:2004 + A1:2007	2008-03
DIN EN 60204-1 Corri- genda 1 * VDE 0113-1 Corrigenda 1	Safety of machinery - Electrical equipment of machines - Part 1: General requirements (IEC 60204-1:2005, modified); German version EN 60204-1:2006, Corrigendum to DIN EN 60204-1 (VDE 0113-1):2007-06; German version CENELEC-Cor. :2010 to EN 60204-1:2006	2010-05
DIN EN 60529; VDE 0470 Part 1	Degrees of protection provided by enclosures (IP code) (IEC 60529:1989 + A1:1999); German version EN 60529:1991 + A1:2000	2000-09
DIN EN 60721-1	Classification of environmental conditions - Part 1: Environmental parame- ters and their severities (IEC 60721-1:1990 + A1:1992 + A2:1995); German version EN 60721-1:1995 + A2:1995	
DIN EN 60721-3-3	Classification of environmental conditions - Part 3: Classification of groups of environmental parameters and their severities; section 3: Stationary use at weatherprotected locations (IEC 60721-3-3:1994); German version EN 60721-3-3:1995	

Document number	Title	Edition
DIN ISO 281	Rolling bearings - Dynamic load ratings and rating life (ISO 281:2007)	2010-10
	Application of cables and cords in power installations - Part 4: Recommen- ded current-carrying capacity for sheathed and nonsheathed cables for fixed wirings in and around buildings and for flexible cables and cords	2003-08

Fig. 15-1: List of standards

15.2 Declaration of Conformity

Electric Drives and Centrols Hydraul	Linear Motion and Assembly Technologies	Pneumatics	Service	Rexroth Bosch Group
Image: Nach Maschinenrichtiji Imach Maschinenrichtiji Imach Niederspannung Imach Druckgeräte-Richtinie Imach ATEX-Richtinie	nie 2006/42/EG srichtlinie 2006/95/EG 004/108/EG ttlinie 97/23/EG		DokNr.: Datum:	TC30318-1 2010-12-13
Hiermit erklärt der Herstell Bosch Rexroth Electric Dr Bürgermeister-DrNebel-S 97816 Lohr a. Main / Gern	ves and Controls GmbH straße 2			
dass das nachstehende P Bezeichnung: Typ: Ab Herstelldatum:	odukt AC-Motor MSK030, MSK040, MSK043, M MSK076, MSK100, MSK101, M 2009-01-08 or oben genannten EU-Richtlinie	ISK103, MSK131		
Angewandte harmonisierte <u>Norm Titel</u> EN 60034-1 Dreh Betrie EN 60034-5 Dreh	e Normen: ende elektrische Maschinen – Te ibsverhalten ende elektrische Maschinen – Te mikonstruktion von drehenden e	eil 1: Bemessung und eil 5: Schutzarten aufgrur	Au 20 nd der 20	isgabe
für Endgeräte, Maschinen Die Bewertung der elektri im eingebauten Zustand a Im eingebauten Zustand k	önnen sich die EMV-Eigenschaft odukt (Endgerät, Maschine, Ar kmäßig.	n. Es darf daher nur zu Ei erheit, der Umwelteinflüs ften dieses Produktes änd	inbauzwecken ver sse (Fremdkörper, dern. g der EMV-Eiger	wendet werden. , Feuchtigkeit) muss
<u>Lohr a. Main</u> , den Ort Änderu		vachim Hennig rkteitung LoP2 sind vorbehalten. Derzeit gültige	Entwicklung	HUMM whard Schemm sbereichsleiter Antriebe
				Seite 1 / 1

Fig.15-2:

Conformity

	Electric Drives and Controls Hy	Linear Motion and Assembly Technologies	Pneumatics Service	Rexroth Bosch Group
	Declaration o (Translation of the o	f Conformity riginal Declaration of Conformity)	Doc. No	o.: TC30318-1
	in accordance wit in accordance wit in accordance wit	h Machinery Directive 2006/42/EC h Low Voltage Directive 2006/95/EC h EMC Directive 2004/108/EC Pressure Equipment Directive 97/23/EC h ATEX Directive 94/9/EC	Date:	2010-12-13
	The manufacturer			
	Bosch Rexroth Electri Bürgermeister-DrNel 97816 Lohr a. Main / (
	hereby declares that t	ne product below		
	Name: Type:	AC motor MSK030, MSK040, MSK043, MS MSK076, MSK100, MSK101, MS	K050, MSK060, MSK061, MSK070, K103, MSK131	MSK071, MSK075,
	From date of manufac	ture: 2009-01-08		
	was developed, desig	ned and manufactured in compliance w	vith the above-mentioned EU directi	ve.
	Harmonized Standard	s applied:		
_	EN 60034-1 F EN 60034-5 F	itle lotating electrical machines – Part 1: R lotating electrical machines – Part 5: D ltegral design of rotating electrical mac	egrees of protection provided by	<u>Edition</u> 2004 2001 + A1:2007
	Further explanations:			
	complete apparatus, n The product may only (foreign bodies, moist After the product has l (complete apparatus,	in unit which, owing to its installation cl nachines or installations from the outse be assessed with regard to its electric ure) after it has been installed in the pr een installed, its EMC properties may machines or installations) should be in oduct intended for the final user.	t. For this reason, it may only be us al and mechanical safety as well as oduct intended for the final user. change. Hence the product intende	sed for built-in purposes. to environmental effects ed for the final user
	Place/date/signature	e as indicated in the original declara	ation.	
	We re	serve the right to make changes to the content of	the Declaration of Conformity. Current issue o	on request.
				Page 1 / 1

Fig. 15-3: Conformity

Service and Support

16 Service and Support

Our service helpdesk at our headquarters in Lohr, Germany and our worldwide service will assist you with all kinds of enquiries. You can reach us **around the clock - even on weekend and on holidays**.

	Helpdesk	Service Hotline Worldwide
Phone	+49 (0) 9352 40 50 60	Outwith Germany please con-
Fax	+49 (0) 9352 40 49 41	tact our sales/service office in your area first.
E-mail	service.svc@boschrex- roth.de	For hotline numbers refer to the sales office addresses on the Internet.
Internet	http://www.boschrexroth.com You will also find additional n nance (e.g. delivery addresse	otes regarding service, mainte- s) and training.

Preparing Information

For quick and efficient help please have the following information ready:

- Detailed description of the fault and the circumstances
- Information on the type plate of the affected products, especially type codes and serial numbers
- Your phone, fax numbers and e-mail address so we can contact you in case of questions.

Index

Α

/ \	
Accumulators	265
Alignment	117
Ambient temperature	209
Ambient temperature in operation	26
Aqueous Solution	235
Attachments	
Available motor variants	153
Axial load	217

В

Balancing Ball bearing pinion	225
Batteries	
Bearing	
Wear	223
Bearing failure	223
Bearing lifetime	223
Bearing load	217
Brake torque	

С	
Centering hole 117	7
CE symbol	
Cleaning	
Climatic conditions	
Compatibility	
Concentricity 11	
Conditions of installation	3
Connection cables	
Connection plan 20 ²	1
Connection Technique	
Inner diameter 20	7
Operating pressure 233	3
Connection techniques	
Operating pressure 233	
Connection time	6
Contained substances	
see "Significant components" 26	
Continuous current at standstill 28	
Continuous torque at standstill 28	
Coolant additives	
Ready-to-use cooling water 23	5
Water treatment kits 236	
Coolant ducts	
Cooling fins	
Cooling water treatment	
Corrosion Protection	
Coupling	
Couplings	4

D

Degree of protection acc. to EN 60529	26
Design	. 213

Index

D

Discharge capacity	25
Disconnection time	
Disposal	265
Drag chains	262
Drive shaft	154
Drive system	11
Duty cycle	

Ε

Electric drive system	11
Energy management chains	
Environmental protection	. 265

F

Fan	
Minimum distance 2	232
Fit	254
Flange1	17
Flange assembly 2	253
Foreign materials 2	213
Frame length 1	53
Frame size 1	

G

Gear pinion	. 224
Getriebe	. 224

Н

11	
Hazardous substances	265
Heat dissipation	
Helical teeth	225
Holding brake	154
Commissioning	228
electrically-released	226
Holding brakes	226
Danger warning	227
Holding torque	26
Housing painting	117
Humidity	
Absolute air humidity	209
Relative air humidity	209

L

•	
Identification	. 246
Inappropriate use	
Consequences, exclusion of liability	9
Installation positions	. 213
Insulation class acc. to DIN EN 60034-1	20
Intended use	9
IP type of protection	. 212

Index

Κ		
Key	117,	215

Μ

Machine accuracy	23
Mass	
Materials, used	236
Maximum current	
Maximum speed	
Maximum torque	
Mean speed.	
Moment of inertia of the brake	
Moment of inertia of the rotor	
Motor assembly	. 253. 254
Motor cooling	,
Coolants	234
Coolant temperature	
Motor frame size	
Motor name plate	
Motor varnish	
Additional varnish	214
MSK030B.	
MSK030C	
MSK040B	
MSK040C	
MSK050B	
MSK050C	
MSK060B	
MSK060C	
MSK061B	
MSK061C	
MSK070C	
MSK070D	
MSK071C	
MSK071D	
MSK071E	
MSK076C	
MSK100A	
MSK100B	
MSK100C	
MSK100D	
MSK101C	
MSK101D	
MSK101E	
MSK103	
MSK131B	
MSK131D	

Ν

Non-intended use	. 10
Number of pole pairs	. 25

0

Operating hours	223
Operating modes	
Output shaft	117, 215

0

Output shaft	
Key balancing	154
Plain output shaft	215
Overdetermined bearing	224

Ρ

35
~
16
33
18
53
35
16

R

Radial load	
Radial shaft sealing ring	
radial shaft sealing rings	
Rated current	
Rated voltage	
Recycling	265
Return of products	
Running noises	262
Run-out	117

S

Safety instructions for electric drives and con-	
trols	
Setup elevation	209
Shaft	
plain	215
with keyway	215
Shaft end	. 117
Shaft load	. 217
Shaft sealing ring	215
Shock	. 210
Shock absorber	249
Significant components	265
Sinusoidal vibrations	210
Sling belts	. 249
Sound pressure level	26
Standards	8
state of the art	9
Support	
see Service Hotline	271
Switch-off temperature	238

Т

Temperature increase on the housing - 6	60 K 23
Temperature increase on the winding - 1	100 K 23
Temperature sensor	238
Thermal time constant	25
Tightness	216
Torque constant at 20°C	25

T Type of protection
U UL authorities
Intended use 9
V Vibration

V
Vibration severity grade (quality of vibration) 117
Voltage constant

W

Warning temperature	. 238
Winding	. 153
Winding inductivity	25
Winding resistance at 20°C	25

Index

Notes

Bosch Rexroth AG Electric Drives and Controls P.O. Box 13 57 97803 Lohr, Germany Bgm.-Dr.-Nebel-Str. 2 97816 Lohr, Germany Tel. +49 (0)93 52-40-0 Fax +49 (0)93 52-48 85 www.boschrexroth.com/electrics

